Peripheral artery disease (PAD) is associated with elevated oxidative stress, and oxidative stress has been implicated as the cause of reduced endothelial reactivity in individuals with PAD. Endothelial function is important because the endothelium contributes to the dilation of arteries during exercise, thereby implicating impaired endothelial function as a mechanism contributing to exacerbated exercise-induced ischemia. Therefore, the purpose of this study is to test the hypothesis that acute exogenous diroximel fumarate (Vumerity) intake will improve antioxidant capacity, thereby reducing oxidative stress and improving vascular function and walking capacity in those with PAD. During this study, participants will be administered diroximel fumarate or a placebo, and the acute effects of diroximel fumarate on vascular function and walking capacity will be assessed. Vascular function and walking capacity will be assessed with flow-mediated dilation, arterial stiffness, head-up tilt test, blood biomarkers, near-infrared spectroscopy, and a treadmill test. There will be a follow-up visit to assess blood work after diroximel fumarate.
Peripheral Artery Disease, Peripheral Vascular Diseases, Peripheral Arterial Disease, Peripheral Arterial Occlusive Disease
Peripheral artery disease (PAD) is associated with elevated oxidative stress, and oxidative stress has been implicated as the cause of reduced endothelial reactivity in individuals with PAD. Endothelial function is important because the endothelium contributes to the dilation of arteries during exercise, thereby implicating impaired endothelial function as a mechanism contributing to exacerbated exercise-induced ischemia. Therefore, the purpose of this study is to test the hypothesis that acute exogenous diroximel fumarate (Vumerity) intake will improve antioxidant capacity, thereby reducing oxidative stress and improving vascular function and walking capacity in those with PAD. During this study, participants will be administered diroximel fumarate or a placebo, and the acute effects of diroximel fumarate on vascular function and walking capacity will be assessed. Vascular function and walking capacity will be assessed with flow-mediated dilation, arterial stiffness, head-up tilt test, blood biomarkers, near-infrared spectroscopy, and a treadmill test. There will be a follow-up visit to assess blood work after diroximel fumarate.
Impact of Nrf2 Activation on Macrovascular, Microvascular & Leg Function & Walking Capacity in Peripheral Artery Disease
-
University of Nebraska - Omaha, Omaha, Nebraska, United States, 68182
Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.
For general information about clinical research, read Learn About Studies.
50 Years to 75 Years
ALL
Yes
University of Nebraska,
Song-Young Park, PhD, PRINCIPAL_INVESTIGATOR, University of Nebraska
2025-08