This is a single center, diagnostic clinical trial in which the investigators aim to prospectively validate a deep learning model that identifies patients with features suggestive of cardiac amyloidosis, including transthyretin cardiac amyloidosis (ATTR-CA). Cardiac Amyloidosis is an age-related infiltrative cardiomyopathy that causes heart failure and death that is frequently unrecognized and underdiagnosed. The investigators have developed a deep learning model that identifies patients with features of ATTR-CA and other types of cardiac amyloidosis using echocardiographic, ECG, and clinical factors. By applying this model to the population served by NewYork-Presbyterian Hospital, the investigators will identify a list of patients at highest predicted risk for having undiagnosed cardiac amyloidosis. The investigators will then invite these patients for further testing to diagnose cardiac amyloidosis. The rate of cardiac amyloidosis diagnosis of patients in this study will be compared to rate of cardiac amyloidosis diagnosis in historic controls from the following two groups: (1) patients referred for clinical cardiac amyloidosis testing at NewYork-Prebysterian Hospital and (2) patients enrolled in the Screening for Cardiac Amyloidosis With Nuclear Imaging in Minority Populations (SCAN-MP) study.
Cardiac Amyloidosis
This is a single center, diagnostic clinical trial in which the investigators aim to prospectively validate a deep learning model that identifies patients with features suggestive of cardiac amyloidosis, including transthyretin cardiac amyloidosis (ATTR-CA). Cardiac Amyloidosis is an age-related infiltrative cardiomyopathy that causes heart failure and death that is frequently unrecognized and underdiagnosed. The investigators have developed a deep learning model that identifies patients with features of ATTR-CA and other types of cardiac amyloidosis using echocardiographic, ECG, and clinical factors. By applying this model to the population served by NewYork-Presbyterian Hospital, the investigators will identify a list of patients at highest predicted risk for having undiagnosed cardiac amyloidosis. The investigators will then invite these patients for further testing to diagnose cardiac amyloidosis. The rate of cardiac amyloidosis diagnosis of patients in this study will be compared to rate of cardiac amyloidosis diagnosis in historic controls from the following two groups: (1) patients referred for clinical cardiac amyloidosis testing at NewYork-Prebysterian Hospital and (2) patients enrolled in the Screening for Cardiac Amyloidosis With Nuclear Imaging in Minority Populations (SCAN-MP) study.
Cardiac Amyloidosis Discovery Trial
-
Columbia University Irving Medical Center / NewYork-Presbyterian Hospital, New York, New York, United States, 10032
Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.
For general information about clinical research, read Learn About Studies.
50 Years to
ALL
No
Pierre Elias,
Timothy J. Poterucha, MD, PRINCIPAL_INVESTIGATOR, Assistant Professor of Medicine
2025-12