The purpose of this study is to examine the acute effect of being choked during partnered sex on neurological measures. The study is designed to identify the effects being choked during partnered sex on the brain through the use of neural-injury blood biomarkers, functional, diffusion, and perfusion MRI, and ocular-motor function across 3 time points (baseline, post-choking, post-non-choking). The central hypothesis is that acute neuronal structural, physiological, and functional alterations will be amplified after an incidence of choking-involved sex. The neural-injury blood biomarkers neurofilament light (NfL), glial fibrillary acidic protein (GFAP), Ubiquitin C-Terminal Hydrolase L1 (UCH-L1), and Tau will be measured in plasma, with the hypothesis that having choking involved sex will result in a increased heightened response compared to baseline and post non-choking involved sex timepoints. An additional panel of inflammatory cytokines may be considered if/when brain injury biomarkers show changes. It is also hypothesized that engaging in choking-involved sex will be associated with changes in fMRI activation patterns. White matter microstructure will be measured by diffusion imaging metrics, with the hypothesis that engaging in choking-involved sex will significantly disrupt microstructure at a post-choking involved sex time point, compared to baseline, but not at the post non-choking involved sex timepoint. The study will also assess oculomotor function as measured by near-point-of-convergence (NPC) in response to engaging in choking involved sex. The hypothesis is that NPC performance will be significantly impaired at the post choking-involved sex timepoint in comparison to both baseline and non-choking involved sex timepoints.
Sexual Behavior, Hypoxia, Brain
The purpose of this study is to examine the acute effect of being choked during partnered sex on neurological measures. The study is designed to identify the effects being choked during partnered sex on the brain through the use of neural-injury blood biomarkers, functional, diffusion, and perfusion MRI, and ocular-motor function across 3 time points (baseline, post-choking, post-non-choking). The central hypothesis is that acute neuronal structural, physiological, and functional alterations will be amplified after an incidence of choking-involved sex. The neural-injury blood biomarkers neurofilament light (NfL), glial fibrillary acidic protein (GFAP), Ubiquitin C-Terminal Hydrolase L1 (UCH-L1), and Tau will be measured in plasma, with the hypothesis that having choking involved sex will result in a increased heightened response compared to baseline and post non-choking involved sex timepoints. An additional panel of inflammatory cytokines may be considered if/when brain injury biomarkers show changes. It is also hypothesized that engaging in choking-involved sex will be associated with changes in fMRI activation patterns. White matter microstructure will be measured by diffusion imaging metrics, with the hypothesis that engaging in choking-involved sex will significantly disrupt microstructure at a post-choking involved sex time point, compared to baseline, but not at the post non-choking involved sex timepoint. The study will also assess oculomotor function as measured by near-point-of-convergence (NPC) in response to engaging in choking involved sex. The hypothesis is that NPC performance will be significantly impaired at the post choking-involved sex timepoint in comparison to both baseline and non-choking involved sex timepoints.
Uncovering the Acute Neurobiological Significance of Emerging Sexual Behaviors
-
Indiana University School of Public Health, Bloomington, Indiana, United States, 47405
Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.
For general information about clinical research, read Learn About Studies.
18 Years to 30 Years
FEMALE
Yes
Indiana University,
2025-04-01