The overall objective is to identify the cognitive circuits associated with military aviator performance by analyzing what anatomic regions of the brain are functionally "active" (neuronal circuit) while being performing virtual flight simulations, the Precision Instrument Control Task (PICT). The flight simulation test will be conducted at two separate timepoints while the subject is receiving a Functional Magnetic Resonance Imaging (fMRI) scan to evaluate which anatomic and functional brain function is associated with precise performance. By scanning at multiple time points we aim to quantify changes in functional and anatomic connectivity that occur throughout the course of training.
Cognitive Performance
The overall objective is to identify the cognitive circuits associated with military aviator performance by analyzing what anatomic regions of the brain are functionally "active" (neuronal circuit) while being performing virtual flight simulations, the Precision Instrument Control Task (PICT). The flight simulation test will be conducted at two separate timepoints while the subject is receiving a Functional Magnetic Resonance Imaging (fMRI) scan to evaluate which anatomic and functional brain function is associated with precise performance. By scanning at multiple time points we aim to quantify changes in functional and anatomic connectivity that occur throughout the course of training.
Determining Which Regions of the Brain Are Active During Flight Simulation at Separate Timepoints During Training
-
Joint Base San Antonio - Randolph & Lackland, San Antonio, Texas, United States, 78150
Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.
For general information about clinical research, read Learn About Studies.
18 Years to 54 Years
ALL
No
The Geneva Foundation,
Paul Sherman, MD, PRINCIPAL_INVESTIGATOR, 59th Medical Wing Science and Technology
2026-09-18