The overall goal of the proposed research is to refine and adapt and perform efficacy testing of a novel reinforcement learning-based approach to personalizing EHR-based tools for PCPs on deprescribing of high-risk medications for older adults. The trial will be conducted at Atrius Health, an integrated delivery network in Massachusetts, and will intervene upon primary care providers. The investigators will conduct a cluster randomized trial using reinforcement learning to adapt electronic health record (EHR) tools for deprescribing high-risk medications versus usual care. 60 PCPs will be randomized (i.e., 30 each to the reinforcement learning intervention and usual care \[no EHR tool\] in each arm) to the trial and follow them for approximately 30 weeks. The primary outcome will be discontinuation or ordering a dose taper for the high-risk medications for eligible patients by included primary care providers, using EHR data at Atrius. The primary hypothesis is that the personalized intervention using reinforcement learning will improve deprescribing compared with usual care.
The overall goal of the proposed research is to refine and adapt and perform efficacy testing of a novel reinforcement learning-based approach to personalizing EHR-based tools for PCPs on deprescribing of high-risk medications for older adults. The trial will be conducted at Atrius Health, an integrated delivery network in Massachusetts, and will intervene upon primary care providers. The investigators will conduct a cluster randomized trial using reinforcement learning to adapt electronic health record (EHR) tools for deprescribing high-risk medications versus usual care. 60 PCPs will be randomized (i.e., 30 each to the reinforcement learning intervention and usual care \[no EHR tool\] in each arm) to the trial and follow them for approximately 30 weeks. The primary outcome will be discontinuation or ordering a dose taper for the high-risk medications for eligible patients by included primary care providers, using EHR data at Atrius. The primary hypothesis is that the personalized intervention using reinforcement learning will improve deprescribing compared with usual care.
Using Reinforcement Learning to Personalize Electronic Health Record Tools to Facilitate Deprescribing
-
Atrius Health, Boston, Massachusetts, United States, 02215
Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.
For general information about clinical research, read Learn About Studies.
18 Years to
ALL
No
Brigham and Women's Hospital,
2026-05-31