A fundamental problem in neuroscience is how the brain computes with noisy neurons. An advantage of population codes is that downstream neurons can pool across multiple neurons to reduce the impact of noise. However, this benefit depends on the noise associated with each neuron being independent. Noise correlations refer to the covariance of noise between pairs of neurons, and such correlations can limit the advantages gained from pooling across large neural populations. Indeed, a large body of theoretical work argues that positive noise correlations between similarly tuned neurons reduce the representational capacity of neural populations and are thus detrimental to neural computation. Despite this apparent disadvantage, such noise correlations are observed across many different brain regions, persist even in well-trained subjects, and are dynamically altered in complex tasks. The investigators have advanced the hypothesis that noise correlations may be a neural mechanism for reducing the dimensionality of learning problems. The viability of this hypothesis has been demonstrated in neural network simulations where noise correlations, when embedded in populations with fixed signal-to-noise ratio, enhance the speed and robustness of learning. Here the investigators aim to empirically test this hypothesis, using a combination of computational modeling, fMRI and pupillometry. Establishing a link between noise correlations and learning would open the door to an investigation into how brains navigate a tradeoff between representational capacity and the speed of learning.
Noise Correlations, Learning Quality
A fundamental problem in neuroscience is how the brain computes with noisy neurons. An advantage of population codes is that downstream neurons can pool across multiple neurons to reduce the impact of noise. However, this benefit depends on the noise associated with each neuron being independent. Noise correlations refer to the covariance of noise between pairs of neurons, and such correlations can limit the advantages gained from pooling across large neural populations. Indeed, a large body of theoretical work argues that positive noise correlations between similarly tuned neurons reduce the representational capacity of neural populations and are thus detrimental to neural computation. Despite this apparent disadvantage, such noise correlations are observed across many different brain regions, persist even in well-trained subjects, and are dynamically altered in complex tasks. The investigators have advanced the hypothesis that noise correlations may be a neural mechanism for reducing the dimensionality of learning problems. The viability of this hypothesis has been demonstrated in neural network simulations where noise correlations, when embedded in populations with fixed signal-to-noise ratio, enhance the speed and robustness of learning. Here the investigators aim to empirically test this hypothesis, using a combination of computational modeling, fMRI and pupillometry. Establishing a link between noise correlations and learning would open the door to an investigation into how brains navigate a tradeoff between representational capacity and the speed of learning.
Investigating The Role of Noise Correlations in Learning
-
Brown University, Providence, Rhode Island, United States, 02906
Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.
For general information about clinical research, read Learn About Studies.
18 Years to
ALL
Yes
Brown University,
Matthew Nassar, PhD, PRINCIPAL_INVESTIGATOR, Brown University
2025-05