This research will leverage machine learning (ML) and causal inference techniques applied to real-world data (RWD) to generate evidence that personalizes treatment strategies for patients with advanced non-small cell lung cancer (aNSCLC). Rather than influencing regulatory decisions or clinical guidelines, the goal of this trial is to refine treatment selection among existing therapeutic options, ensuring that care is tailored to individual patient characteristics. Additionally, by generating real-world evidence, these findings will inform the design and implementation of future clinical trials. Importantly, the methodological advancements will establish a pipeline that extends beyond aNSCLC, facilitating the identification of optimal dynamic treatment regimes (DTRs) for other complex diseases.
Non-small Cell Lung Cancer
This research will leverage machine learning (ML) and causal inference techniques applied to real-world data (RWD) to generate evidence that personalizes treatment strategies for patients with advanced non-small cell lung cancer (aNSCLC). Rather than influencing regulatory decisions or clinical guidelines, the goal of this trial is to refine treatment selection among existing therapeutic options, ensuring that care is tailored to individual patient characteristics. Additionally, by generating real-world evidence, these findings will inform the design and implementation of future clinical trials. Importantly, the methodological advancements will establish a pipeline that extends beyond aNSCLC, facilitating the identification of optimal dynamic treatment regimes (DTRs) for other complex diseases.
Machine Learning Approaches to Personalized Therapy for Advanced Non-small Cell Lung Cancer With Real-World Data
-
Huntsman Cancer Institute at the University of Utah, Salt Lake City, Utah, United States, 84112
Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.
For general information about clinical research, read Learn About Studies.
to
ALL
No
University of Utah,
2026-03