321 Clinical Trials for Various Conditions
This is a two-part Phase I add-on clinical trial in newly diagnosed glioblastoma or GBM. By "add-on" what is meant is that the experimental intravenous therapy, RRx-001, is combined or "added on" to standard of care. In newly diagnosed GBM standard of care consists of radiotherapy + temozolomide (TMZ) for 6 weeks followed (after a 4-6 weeks break) by maintenance TMZ given until the tumor progresses or worsens. By "maintenance" therapy what is meant is that TMZ is given less frequently to prolong or extend the time during which the tumor remains stable. G-FORCE-1 will be conducted in two parts; in the first part of the study (Dose Escalation, Part A) patients will be entered or assigned sequentially (that is consecutively) to gradually escalating or increasing doses of RRx-001 after patients have been entered on the previous dose until such time as it is no longer tolerated. At each dose level, a separate cohort or small group of at least 3 evaluable patients will be treated. RRx-001 will be administered by intravenous infusion (in other words, by slow injection in the veins) over 30-45 minutes once weekly during radiotherapy for 6 weeks followed by the FDA-approved chemotherapy, temozolomide (TMZ) alone for up to 6 months or longer. In the second part of this study (Part B), new groups or cohorts of patients will receive RRx-001 at the dose established in Part A by intravenous infusion over 30-45 minutes once weekly during radiotherapy for 6 weeks. Then, after a 4-6 weeks break, each cohort will receive increasing doses of RRx-001 and temozolomide (in other words, a double dose escalation) to establish an acceptable safety and activity window, in other words, a dose range that is relatively free of toxicity as well as active against the tumor, although the primary purpose of this study is to assess or evaluate safety. The reason or rationale to "add on" RRx-001 to radiotherapy and TMZ, which is described in more detail below on this page, is as follows: RRx-001 is a radiosensitizer and a chemosensitizer, which means that experimentally it increases the activity of radiation and chemotherapy in tumors. In addition, in other ongoing clinical trials, patients have experienced minimal toxicity or side effects with RRx-001 alone and also in combination with radiation in the brain; therefore, the hope is that RRx-001 will synergize or combine well with radiotherapy and TMZ in GBM without adding toxicity
This is a single-institution, open-label, early-phase study to assess the ability of ribociclib (LEE011) to inhibit CDK4/CDK6/Rb/E2F signaling and cell proliferation/viability in core and infiltrating tumor tissues obtained from patients with recurrent glioblastoma or anaplastic glioma compared to the baseline/primary pathologic tumor specimen. Abundant preclinical evidence indicates that Rb-deficient cancer cells are resistant to CDK4/6 inhibition and ongoing trials with CDK4/6 inhibitors exclude patients with Rb-deficient tumors. The investigators will evaluate 10 patients with Rb-positive glioblastoma or anaplastic glioma in this study. Given that a minority of glioblastomas ha Rb loss the investigators anticipate enrolling a maximum of 20 patients, to meet our goal of 10 patients with Rb-positive tumors.
Radiation therapy uses high-energy x-rays to kill tumor cells. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. It is not yet known whether giving radiation with concomitant and adjuvant temozolomide versus radiation with adjuvant PCV is more effective in treating anaplastic glioma or low grade glioma.
This phase II trial studies how well bendamustine hydrochloride works in treating patients with anaplastic glioma or glioblastoma that has come back (recurrent) or growing, spreading or getting worse (progressive). Drugs used in chemotherapy, such as bendamustine hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing.
RATIONALE: Diagnostic procedures, such as MRI, may help in learning how well radiation therapy and chemotherapy work in killing tumor cells and allow doctors to plan better treatment. PURPOSE: This clinical trial is studying MRI scans to see how well they evaluate the effects of radiation therapy and chemotherapy in patients with newly diagnosed glioblastoma multiforme or anaplastic glioma.
RATIONALE: Radiation therapy uses high-energy x-rays to kill tumor cells. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving radiation therapy together with temozolomide may kill more tumor cells. It is not yet known whether giving temozolomide during and/or after radiation therapy is more effective than radiation therapy alone in treating anaplastic glioma. PURPOSE: This randomized phase III trial is studying giving temozolomide during and/or after radiation therapy to see how well it works compared to radiation therapy alone in treating patients with anaplastic glioma.
Objectives: To determine maximum tolerated dose of CPT-11 when administered following Temodar plus O6-benzylguanine To characterize any toxicity associated w combo of CPT-11 + Temodar plus O6-BG To observe pts for clinical antitumor response when treated w combo of CPT-11 + Temodar + O6-BG
The goal of this clinical research study is to learn if the combination of 6-Thioguanine, Xeloda (capecitabine), and Celebrex (celecoxib) with Temodar (temozolomide) or Lomustine (CCNU) is effective in the treatment of recurrent or progressive anaplastic glioma or glioblastoma multiforme in patients who have failed previous treatments. The safety of these combination treatment will also be studied. Objectives: 1.1 To determine the efficacy, as measured by 12 month progression-free survival, of TEMOZOLOMIDE or CCNU with 6-THIOGUANINE followed by CAPECITABINE and CELECOXIB in the treatment of patients with recurrent and/or progressive anaplastic gliomas or glioblastoma multiforme. 1.2 To determine the long-term toxicity of TEMOZOLOMIDE or CCNU with 6-THIOGUANINE followed by CAPECITABINE and CELECOXIB in recurrent anaplastic glioma or glioblastoma multiforme patients treated in this manner. 1.3 To determine the clinical relevance of genetic subtyping tumors as a predictor of response to this chemotherapy and long term survival
This is an open-label, multicenter, phase II trial, assessing the antitumor activity, and safety of temozolomide in combination with O6-BG in patients with temozolomide-resistant anaplastic glioma.
RATIONALE: Biological therapies such as poly-ICLC use different ways to stimulate the immune system and stop tumor cells from growing. PURPOSE: This phase II trial is studying how poly-ICLC works in treating patients with recurrent, progressive, or relapsed anaplastic glioma.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining more than one drug may kill more tumor cells. PURPOSE: Phase I trial to study the effectiveness of combining temozolomide and O6-benzylguanine in treating patients who have newly diagnosed, recurrent, or progressive anaplastic glioma.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining more than one drug may kill more tumor cells. PURPOSE: Phase II trial to study the effectiveness of temozolomide and carmustine in treating patients with anaplastic glioma.
This study is a clinical trial to assess the efficacy and confirm the safety of intratumoral inoculation of G207 (an experimental virus therapy) combined with a single 5 Gy dose of radiation in recurrent/progressive pediatric high-grade gliomas
The goal of Phase 1 of this clinical research study is to find the highest tolerable dose and best schedule of the combination of everolimus and sorafenib that can be given to patients with malignant glioma. The goal of Phase 2 of this study to learn if the combination of everolimus and sorafenib can help to control malignant glioma. The safety of this combination will also be studied in both phases.
Background: One way tumors are able to grow is by forming new blood vessels that supply them with nutrients and oxygen. Sunitinib blocks certain proteins on the surface of tumor and blood vessel cells that are involved with the formation of new blood vessels. Blocking these proteins may prevent the tumor cells or blood vessels from continuing to grow. Objectives: To determine whether sunitinib can cause tumors to shrink or stabilize in patients with recurrent brain cancer. Eligibility: Patients 18 years of age or older with brain cancer whose disease has worsened after standard treatment with surgery, radiation. Design: Patients take a sunitinib pill once a day in 4-week treatment cycles. Treatment may continue as long as the tumor remains stable or decreases in size and the side effects of treatment are tolerated. Routine blood tests are done every 2 weeks during the first 8 weeks of treatment and then every 4 weeks after that. Magnetic resonance imaging (MRI) scans are done before starting treatment (at baseline) and at the end of every 4-week cycle to monitor tumor growth. Positron emission tomography (PET) scans are done at baseline and at the end of the first cycle. Neurological and physical examinations are done at baseline, at week 2 of treatment and at the end of every treatment cycle. Health-related quality of life is assessed every 4 weeks. Pregnancy tests, electrocardiograms and echocardiograms are repeated as needed.
Objectives: To define role of O6-Benzylguanine (BG) in restoring Temodar (temozolomide) sensitivity in patients with Temodar-resistant malignant glioma. To further define toxicity of combo therapy using Temodar + BG.
The goal of this clinical research study is to learn if vorinostat when given with isotretinoin and temozolomide can help to control glioblastoma or gliosarcoma. The safety of these drug combinations will also be studied.
This study offers evaluation of patients with brain and spinal cord tumors. Its purpose is threefold: 1) to allow physicians in NIH s Neuro-Oncology Branch to increase their knowledge of the course of central nervous system tumors and identify areas that need further research; 2) to inform participants of new studies at the National Cancer Institute and other centers as they are developed; and 3) to provide patients consultation on possible treatment options. Children (at least 1 year old) and adults with primary malignant brain and spinal cord tumors may be eligible for this study. Participants will have a medical history, physical and neurological examinations and routine blood tests. They may also undergo one or more of the following procedures: * Magnetic resonance imaging (MRI) MRI is a diagnostic tool that uses a strong magnetic field and radio waves instead of X-rays to show detailed changes in brain structure and chemistry. For the procedure, the patient lies on a table in a narrow cylinder containing a magnetic field. A contrast material called gadolinium may be used (injected into a vein) to enhance the images. The procedure takes about an hour, and the patient can speak with a staff member via an intercom system at all times. * Computed axial tomography (CAT or CT) CT is a specialized form of X-ray imaging that produces 3-dimensional images of the brain in sections. The scanner is a ring device that surrounds the patient and contains a moveable X-ray source. The scan takes about 30 minutes and may be done with or without the use of a contrast dye. * Positron emission tomography (PET) PET is a diagnostic test that is based on differences in how cells take up and use glucose (sugar), one of the body s main fuels. The patient is given an injection of radioactive glucose. A special camera surrounding the patient detects the radiation emitted by the radioactive material and produces images that show how much glucose is being used by various tissues. Fast-growing cells, such as tumors, take up and use more glucose than normal cells do, and therefore, the scan might indicate the overall activity or aggressiveness of the tumor. The procedure takes about an hour. When all the tests are completed, the physician will discuss the results and potential treatment options with the patient. Follow-up will vary according to the individual. Some patients may end the study with just one visit to NIH, while others may be followed at NIH regularly, in conjunction with their local physicians. Patients with aggressive tumors may be seen every 3 or 4 months, while those with less active tumors may be seen every 6 to 12 months. Permission may be requested for telephone follow-up (with the patient or physician) of patients not seen regularly at NIH. ...
One of Disulfiram antitumor effects suggested in preclinical studies is MGMT (methyl-guanine-methyl-transferase) inhibition. Disulfiram MGMT inhibitory effect is enhanced by addition of Copper. This study evaluates the impact of Disulfiram (DSF) + Copper (Cu) combination when added to standard Temozolomide in the treatment of unmethylated Glioblastoma Multiforme (GBM) patients.
This study will evaluate the safety and tolerability of increasing doses of PF-06840003 in patients with malignant gliomas.
To determine the efficacy of Pulse Reduced Dose Rate (PRDR) radiation when given in 27 fraction over 5.5 weeks with concurrent bevacizumab followed by adjuvant bevacizumab until time of progression in patients with recurrent high grade gliomas (grade III and grade IV). Patients will be placed in 1 of 4 groups based on their histologic diagnosis and prior exposure to bevacizumab.
The purpose of this study is to determine the antitumor activity of PPX in combination with temozolomide and radiation for patients with newly diagnosed brain tumors.
The purpose of this study is to determine the safety and tolerability of XL765 in combination with Temozolomide in adults with anaplastic gliomas or glioblastoma on a stable Temozolomide maintenance dose. XL765 is a new chemical entity that inhibits the kinases PI3K and mTOR. In preclinical studies, inactivation of PI3K has been shown to inhibit growth and induce apoptosis (programmed cell death) in tumor cells, whereas inactivation of mTOR has been shown to inhibit the growth of tumor cells. Temozolomide (TMZ, Temodar®) is an orally administered alkylating agent with activity against malignant gliomas. It is approved by the Food and Drug Administration for the following indications: 1) treatment of newly diagnosed glioblastoma multiforme (GBM) patients when given concomitantly with radiotherapy and then as maintenance treatment; 2) refractory anaplastic astrocytoma (AA), ie, patients who have experienced disease progression on a drug regimen containing nitrosourea and procarbazine. Temozolomide is commonly used in the treatment of other anaplastic gliomas (AG) including oligodendroglial tumors and mixed gliomas.
RATIONALE: Current therapies for childhood brain tumors provide limited benefit to the patient. The anti-cancer properties of Antineoplaston therapy suggest that it may prove beneficial in the treatment of childhood brain tumors. PURPOSE: This study is being performed to determine the effects (good and bad) that Antineoplaston therapy has on children (\> 6 months of age) with brain tumors.
The best dose of radiation to be given with bevacizumab is currently unknown. This study will use higher doses of radiation with bevacizumab than have been used before. This study will test the safety of radiation given at different doses with bevacizumab to find out what effects, good and/or bad, it has on the patient and the malignant glioma or related brain cancers.
The purpose of this research study to determine if treating recurrent malignant gliomas with another person's (donor) immune system cells known as aCTL cells, will be safe. This study will also try to determine if persons who receive aCTL's are more or less likely to survive their brain tumor than persons who had similar tumors in the past. Approximately 15 patients will be enrolled at UCLA.
The primary objective is to evaluate the intratumoral and plasma pharmacokinetics of AC480 among patients who are candidates for a resection with a recurrent malignant glioma who are not on CYP-3A enzyme inducing anti-epileptic drugs (EIAEDS). Secondary objectives include the following: to evaluate the antiproliferative effect of AC480 by FDG-PET Scan; to evaluate the safety and tolerability of AC480; and, to describe 6-month progression-free survival (PFS) and radiographic response. This is a single institution, open label, pharmacokinetic study of AC480 in patients with recurrent malignant glioma. The study will enroll 5 patients who are not on enzyme inducing anti-epileptic drugs (EIAEDs) and are scheduled to undergo salvage surgical resection for preoperative treatment with AC480 at 300 mg orally twice daily (BID) for 14 (plus or minus 2) days before surgery (Part I- Induction Therapy). After surgery (Part II- Maintenance Therapy), patients will continue to be dosed with AC480 until disease progression or intolerance, and will be evaluated after every other cycle (1 cycle is 28 days).
The primary objective of this study is to determine the maximum tolerated dose (MTD) and dose limiting toxicity (DLT) of dasatinib when combined with protracted, daily temozolomide (TMZ). Secondary objectives are: To further evaluate the safety and tolerability of dasatinib plus protracted, daily TMZ; 2. To evaluate the pharmacokinetics of dasatinib when administered with protracted, daily TMZ among recurrent malignant glioma patients who are on and not on CYP-3A enzyme inducing anti-epileptic drugs (EIAEDs); 3. To evaluate for anti-tumor activity with this regimen in this patient population.
The purpose of this study is to determine if capecitabine is effective in the treatment of high grade gliomas that have returned after completing treatment.
The purpose of this study is to find out about the safety of adding the investigational drug motexafin gadolinium to a standard course of chemotherapy with temozolomide for patients with malignant glioma. Secondly, the study will determine how many patients will respond to this treatment.