444 Clinical Trials for Various Conditions
Background: Glioblastoma (GBM) is a type of malignant glioma. These cancers are nearly always fatal. People who develop these cancers get aggressive treatments. But the tumors almost always recur. Researchers want to study people with newly diagnosed disease to learn more. Objective: To study people with newly diagnosed GBM or gliosarcoma to look at the changes in immune cells in the blood of those who take ipilimumab and nivolumab, along with temozolomide. Eligibility: Adults ages 18 and older with newly diagnosed GBM or gliosarcoma, who have had surgical removal of their tumor and have completed standard initial chemotherapy and radiation therapy. Design: Participants will be screened with the following: Medical record review Medical history Physical exam Tests to assess their nervous system and their ability to do typical activities Blood tests Tumor assessment. For this, they will have magnetic resonance imaging (MRI). They may get a contrast dye through an intravenous (IV) catheter. The MRI scanner makes noise. They will get earplugs. Electrocardiogram. It measures heart rate and rhythm. They will lie still. Sticky pads will be placed on their chest, arms, and legs. Screening tests will be repeated during the study. Treatment will be given in cycles. Each cycle lasts 4 weeks. Participants will get nivolumab and ipilimumab via IV. They will take temozolomide by mouth. They will keep a pill diary. Participants will fill out surveys about their symptoms. Participants will have follow-up visits about 60 days and 100 days after treatment ends. Then they will be contacted every 6 months for the rest of their life.
This phase I trial investigates the side effects and best dose of Peposertib, and to see how well it works in combination with radiation therapy in treating patients with newly diagnosed MGMT unmethylated glioblastoma or gliosarcoma. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Peposertib may further stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Chemotherapy drugs, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving Peposertib with radiation therapy may work better than radiation therapy alone in treating patients with glioblastoma or gliosarcoma.
The purpose of this research study is to evaluate the safety of the study drug, NU-0129, based on Spherical Nucleic Acid (SNA) platform when infused in patients with recurrent glioblastoma multiforme or gliosarcoma. The SNA consists of nucleic acids arranged on the surface of a small spherical gold nanoparticle. This is a first-in-human trial to determine the safety of NU-0129. NU-0129 can cross the blood brain barrier (a filtering mechanism that carry blood to the brain). Once within the tumor, the nucleic acid component is able to target a gene called Bcl2L12 that is present in glioblastoma multiforme, and is associated with tumor growth. This gene prevents tumor cells from apoptosis, which is the process of programmed cell death, thus promoting tumor growth. Researchers think that targeting the Bcl2L12 gene with NU-0129 will help stop cancer cells from growing.
It is known that after application of MK-3475 activated PD -1 negatively regulates the activation of T cells through suppression of the path of PI3K / Akt. This study will identify the effectiveness of oral inhibitors of PI3K / Akt pathway in comparison with MK-3475 (pembrolizumab).
This phase I trial studies the safety and best dose of ipilimumab, nivolumab, or both in combination with temozolomide in treating patients with newly diagnosed glioblastoma or gliosarcoma. Monoclonal antibodies, such as ipilimumab and nivolumab, may block tumor growth in different ways by targeting certain cells. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. It is not yet known which combination is a better treatment for glioblastoma or gliosarcoma.
Glioblastoma (GBM) and gliosarcoma (GS) are the most common and aggressive forms of malignant primary brain tumor in adults and can be resistant to conventional therapies. The purpose of this Phase Ib study is to evaluate how well a recurrent glioblastoma or gliosarcoma tumor responds to one injection of DNX-2401, a genetically modified, conditionally replicative and oncolytic human-derived adenovirus. DNX-2401 is delivered directly into the tumor where it may establish an active infection by replicating in and killing tumor cells.
RATIONALE: Monoclonal antibodies, such as bevacizumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Drugs used in chemotherapy, such as temozolomide, also work in different ways to kill tumor cells or stop them from growing. Giving bevacizumab together with temozolomide may be a better way to block tumor growth. PURPOSE: This phase II trial is studying how well giving bevacizumab and temozolomide together works in treating older patients with newly diagnosed glioblastoma multiforme or gliosarcoma.
The primary objective of this study is to determine the 6-month Progression free survival (PFS) when intravenous (IV) AR-67 is administered in adults with confirmed recurrence of GBM who have not recently (\> 90 days) recurred after treatment bevacizumab (including patients who've received temazolamide, but no bevacizumab). The primary objective in the rapid bevacizumab failure group (\< 90 days) is to determine the 2-month PFS.
The goal of this clinical research study is to find the highest tolerable dose of sorafenib that can be given in combination with temozolomide. The safety of this combination will also be studied.
Primary objective- To determine efficacy of Avastin, 10 mg/kg every other week, in combination with standard 5-day temozolomide in terms of response rate. Secondary objective- To determine safety of Avastin \& Temozolomide in unresectable glioblastoma patients
Primary objective: To use overall survival to assess the efficacy of the combination of radiation therapy, temozolomide and Avastin followed by Avastin, temozolomide, and irinotecan in the treatment of grade IV malignant glioma patients following surgical resection. Secondary objective: To determine the progression-free survival following the combination of radiation therapy, temozolomide and Avastin followed by Avastin, temozolomide, and irinotecan. Exploratory Objective: To explore the relationship between biomarkers and outcome (overall survival and progression-free survival) among patients with grade IV malignant glioma treated with radiation therapy, temozolomide and Avastin followed by Avastin, temozolomide, and irinotecan. To describe the toxicity of radiation therapy,temozolomide and Avastin followed by Avastin, temozolomide, and irinotecan.
This is a phase II study of Bevacizumab plus Temodar and Tarceva in patients with non-progressive glioblastoma or gliosarcoma. Patients must have stable disease immediately following a standard course of up-front radiotherapy and Temodar. All patients will receive Bevacizumab, Temodar and Tarceva. A total of 60 patients will be enrolled. Our hypothesis is that the combination of Bevacizumab plus Temodar and Tarceva will increase survival over that seen in historical controls who have newly diagnosed, non-progressive glioblastoma or gliosarcoma following radiotherapy plus Temodar and use Temodar alone.
There will be 2 phases in this study. Patients will either be enrolled to the first phase or to the second phase, depending upon when they enroll into the study. The first phase of this study is done to evaluate the safety of enzastaurin in patients. This is done by gradually increasing the dose of the drug in small groups of patients and watching closely for side effects. In the second phase of the study, the dose determined to be safe will be used with temozolomide during and following radiation therapy to see if the combination can help patients with brain tumors live longer.
This study is the first step in testing the hypothesis that adding Photobac® Photodynamic Therapy to surgical removal of a glioblastoma or gliosarcoma will be both safe and effective. Photodynamic Therapy (PDT) combines light and a photosensitizer. PDT has been used to treat a variety of cancers with varying degrees of success. For the past thirty years Photolitec has been working to develop a treatment for glioblastoma or gliosarcoma using light and a photosensitizer. Photolitec's scientists were looking for a photosensitizer that: 1. has no significant systemic toxicity apart from some temporary skin photosensitivity, 2. crosses the blood brain barrier, 3. accumulates to a high level in glioblastoma and minimally in the brain, 4. is activated by the wavelength of light that penetrates most deeply into the brain, 5. minimizes any temporary skin photosensitivity. Preliminary testing indicates the Photolitec team has achieved these five goals. Photolitec is now able to offer a clinical trial based on the results of this work.
RATIONALE: Monoclonal antibodies, such as bevacizumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Bevacizumab may also stop the growth of tumor cells by blocking blood flow to the tumor. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Radiation therapy uses high energy x-rays to kill tumor cells. Giving bevacizumab together with temozolomide and radiation therapy may kill more tumor cells. PURPOSE: This phase II trial is studying the side effects and how well giving bevacizumab together with temozolomide and external beam radiation therapy works when given as first-line therapy in treating patients with newly diagnosed glioblastoma multiforme or gliosarcoma.
RATIONALE: Bortezomib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Radiation therapy uses high-energy x-rays to kill tumor cells. Giving bortezomib together with temozolomide and radiation therapy may kill more tumor cells and allow doctors to save the part of the body where the cancer started. PURPOSE: This phase II trial is studying the side effects and how well bortezomib works when given together with temozolomide and regional radiation therapy in treating patients with newly diagnosed glioblastoma multiforme or gliosarcoma.
RATIONALE: Monoclonal antibodies, such as bevacizumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Bevacizumab may also stop the growth of tumor cells by blocking blood flow to the tumor. Erlotinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving bevacizumab together with erlotinib may kill more tumor cells. PURPOSE: This phase II trial is studying how well giving bevacizumab together with erlotinib works after radiation therapy and temozolomide in treating patients with newly diagnosed glioblastoma multiforme or gliosarcoma.
This phase I trial is studying the side effects and best dose of aflibercept when given together with radiation therapy and temozolomide in treating patients with newly diagnosed or recurrent glioblastoma multiforme, gliosarcoma, or other malignant glioma. Aflibercept may stop the growth of tumor cells by blocking blood flow to the tumor. Radiation therapy uses high-energy x-rays to kill tumor cells. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving aflibercept together with radiation therapy and temozolomide may kill more tumor cells.
This phase I trial is studying the side effects and best dose of bevacizumab and cediranib maleate in treating patients with metastatic or unresectable solid tumor, lymphoma, intracranial glioblastoma, gliosarcoma or anaplastic astrocytoma. Monoclonal antibodies, such as bevacizumab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Cediranib maleate may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Bevacizumab and cediranib maleate may also stop the growth of cancer cells by blocking blood flow to the cancer. Giving bevacizumab together with cediranib maleate may kill more cancer cells.
This randomized phase II trial is studying the side effects and how well giving bevacizumab together with irinotecan or temozolomide works in treating patients with recurrent or refractory glioblastoma multiforme or gliosarcoma. Monoclonal antibodies, such as bevacizumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Bevacizumab may also stop the growth of tumor cells by blocking blood flow to the tumor. Drugs used in chemotherapy, such as irinotecan and temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving bevacizumab together with irinotecan or temozolomide may kill more tumor cells.
This phase II trial studies how well dasatinib works in treating patients with glioblastoma multiforme or gliosarcoma that has come back. Dasatinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
RATIONALE: Erlotinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. PURPOSE: This phase II trial is studying how well erlotinib works in treating patients with recurrent glioblastoma multiforme or gliosarcoma.
This phase I/II trial is studying the side effects and best dose of erlotinib, tipifarnib, and temsirolimus when given together with sorafenib and to see how well they work in treating patients with recurrent glioblastoma multiforme or gliosarcoma. Sorafenib, erlotinib, tipifarnib, and temsirolimus may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Sorafenib and tipifarnib may also stop the growth of tumor cells by blocking blood flow to the tumor. Giving sorafenib together with erlotinib, tipifarnib, or temsirolimus may kill more tumor cells.
This phase I/II trial is studying the side effects and best dose of motexafin gadolinium when given together with temozolomide and radiation therapy and to see how well they work in treating patients with newly diagnosed supratentorial glioblastoma multiforme or gliosarcoma. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Motexafin gadolinium may help temozolomide work better by making tumor cells more sensitive to the drug. Radiation therapy uses high-energy x-rays to kill tumor cells. Motexafin gadolinium may also make tumor cells more sensitive to radiation therapy. Giving motexafin gadolinium together with temozolomide and radition therapy may kill more tumor cells.
RATIONALE: Radiation therapy uses high-energy x-rays to kill tumor cells. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving radiation therapy together with temozolomide may kill more tumor cells. It is not yet known which schedule of temozolomide when given together with radiation therapy is more effective in treating glioblastoma or gliosarcoma. PURPOSE: This randomized phase III trial is studying two different schedules of temozolomide to compare how well they work when given together with radiation therapy in treating patients with newly diagnosed glioblastoma or gliosarcoma.
This phase I trial is studying the side effects and best dose of tipifarnib when given together with temozolomide and radiation therapy in treating patients with newly diagnosed glioblastoma multiforme or gliosarcoma. Tipifarnib may stop the growth of tumor cells by blocking the enzymes necessary for tumor cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Radiation therapy uses high-energy x-rays to damage tumor cells. Combining tipifarnib, temozolomide, and radiation therapy may kill more tumor cells.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Radiation therapy uses high-energy x-rays to damage tumor cells. Giving chemotherapy together with radiation therapy may kill more tumor cells. PURPOSE: This phase II trial is studying how well giving chemotherapy together with radiation therapy after surgery followed by chemotherapy alone works in children with newly diagnosed astrocytoma, glioblastoma multiforme, gliosarcoma, or diffuse intrinsic pontine glioma.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Radiation therapy uses high-energy x-rays to damage tumor cells. O6-benzylguanine may help carmustine kill more tumor cells by making tumor cells more sensitive to the drug. It is not yet known whether radiation therapy and carmustine are more effective with or without O6-benzylguanine. PURPOSE: Randomized phase III trial to compare the effectiveness of radiation therapy plus carmustine with or without O6-benzylguanine in treating patients who have newly diagnosed glioblastoma multiforme or gliosarcoma.
This early phase I trial identifies the best dose, possible benefits and/or side effects of natural progesterone in treating patients with glioblastoma that has come back (recurrent). Progesterone is a type of hormone made by the body that plays a role in the menstrual cycle and pregnancy. Progesterone may help control tumor growth and spread in patients with glioblastoma.
This phase II/III trial compares the usual treatment with radiation therapy and temozolomide to radiation therapy in combination with immunotherapy with ipilimumab and nivolumab in treating patients with newly diagnosed MGMT unmethylated glioblastoma. Radiation therapy uses high energy photons to kill tumor and shrink tumors. Chemotherapy drugs, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Temozolomide, may not work as well for the treatment of tumors that have the unmethylated MGMT. Immunotherapy with monoclonal antibodies called immune checkpoint inhibitors, such as ipilimumab and nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. It is possible that immune checkpoint inhibitors may work better at time of first diagnosis as opposed to when tumor comes back. Giving radiation therapy with ipilimumab and nivolumab may lengthen the time without brain tumor returning or growing and may extend patients' life compared to usual treatment with radiation therapy and temozolomide.