Treatment Trials

58 Clinical Trials for Various Conditions

Focus your search

COMPLETED
Temozolomide Plus Radiation Therapy in Treating Patients With Newly Diagnosed Anaplastic Oligodendrogliomas or Mixed Anaplastic Oligoastrocytomas
Description

RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Radiation therapy uses high-energy x-rays to damage tumor cells. Combining chemotherapy and radiation therapy may kill more tumor cells. PURPOSE: Phase II trial to study the effectiveness of combining temozolomide with radiation therapy in treating patients who have newly diagnosed anaplastic oligodendrogliomas or mixed anaplastic oligoastrocytomas.

COMPLETED
Carboplatin, Melphalan, Etoposide Phosphate, Mannitol, and Sodium Thiosulfate in Treating Patients With Previously Treated Brain Tumors
Description

This phase I/II trial studies the side effects and best dose of melphalan when given together with carboplatin, etoposide phosphate, mannitol, and sodium thiosulfate and to see how well they work in treating patients with previously treated brain tumors. Drugs used in chemotherapy, such as melphalan, carboplatin, and etoposide phosphate, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing, or by stopping them from spreading. Osmotic blood-brain barrier disruption (BBBD) uses mannitol to open the blood vessels around the brain and allow cancer-killing substances to be carried directly to the brain. Sodium thiosulfate may help lessen or prevent hearing loss and toxicities in patients undergoing chemotherapy with carboplatin and BBBD. Giving carboplatin, melphalan, etoposide phosphate, mannitol, and sodium thiosulfate together may be an effective treatment for brain tumors.

RECRUITING
Multiple Doses of Neural Stem Cell Virotherapy (NSC-CRAd-S-pk7) for the Treatment of Recurrent High-Grade Gliomas
Description

This phase I trial studies the effect of multiple doses of NSC-CRAd-S-pk7 in treating patients with high-grade gliomas that have come back (recurrent). NSC-CRAd-S-pk7 consists of neural stem cells that carry a virus, which can kill cancer cells. Giving multiple doses of NSC-CRAd-S-pk7 may kill more tumor cells.

RECRUITING
Chemotherapy and Radiation Therapy for the Treatment of IDH Wildtype Gliomas or Non-histological (Molecular) Glioblastomas
Description

This phase II trial studies how well temozolomide and radiation therapy work in treating patients with IDH wildtype historically lower grade gliomas or non-histological molecular glioblastomas. Radiation therapy uses high-energy x-rays to kill tumor cells and shrink tumors. Giving chemotherapy with radiation therapy may kill more tumor cells. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. The goal of this clinical research study is to compare receiving new radiation therapy doses and volumes to the prior standard treatment for patients with historically grade II or grade III IDH wild-type gliomas, which may now be referred to as IDH wildtype molecular glioblastomas at some institutions. Receiving temozolomide in combination with radiation therapy may also help to control the disease.

ACTIVE_NOT_RECRUITING
Proton Beam or Intensity-Modulated Radiation Therapy in Preserving Brain Function in Patients With IDH Mutant Grade II or III Glioma
Description

This randomized phase II clinical trial studies the side effects and how well proton beam or intensity-modulated radiation therapy works in preserving brain function in patients with IDH mutant grade II or III glioma. Proton beam radiation therapy uses tiny charged particles to deliver radiation directly to the tumor and may cause less damage to normal tissue. Intensity-modulated or photon beam radiation therapy uses high-energy x-ray beams shaped to treat the tumor and may also cause less damage to normal tissue. It is not yet known if proton beam radiation therapy is more effective than photon-based beam intensity-modulated radiation therapy in treating patients with glioma.

COMPLETED
Neural Stem Cell Based Virotherapy of Newly Diagnosed Malignant Glioma
Description

Malignant gliomas have a very poor prognosis with median survival measured in months rather than years. It is a disease in great need of novel therapeutic approaches. Based on the encouraging results of our preclinical studies which demonstrate improved efficacy without added toxicity, the paradigm of delivering a novel oncolytic adenovirus via a neural stem cell line in combination with radiation and chemotherapy is well-suited for evaluation in newly diagnosed malignant gliomas. The standard-of-care allows application of virotherapy as neoadjuvant therapy and assessment of the cooperative effects with radiation/chemotherapy without altering the standard treatment.

COMPLETED
Phase 1b Study PVSRIPO for Recurrent Malignant Glioma in Children
Description

The purpose of the study is to confirm the safety of the selected dose and potential toxicity of oncolytic poliovirus (PV) immunotherapy with PVSRIPO for pediatric patients with recurrent WHO grade III or IV malignant glioma, but evidence for efficacy will also be sought. The primary objective is to confirm the safety of the selected dose of PVSRIPO when delivered intracerebrally by convection-enhanced delivery (CED) in children with recurrent WHO Grade III malignant glioma (anaplastic astrocytoma, anaplastic oligoastrocytoma, anaplastic oligodendroglioma, anaplastic pleomorphic xanthoastrocytoma) or WHO Grade IV malignant glioma (glioblastoma, gliosarcoma). A secondary objective is to estimate overall survival (OS) in this population.

RECRUITING
Super Selective Intra-arterial Repeated Infusion of Cetuximab (Erbitux) With Reirradiation for Treatment of Relapsed/Refractory GBM, AA, and AOA
Description

Primary brain tumors are typically treated by surgery, radiation therapy and chemotherapy, either individually or in combination. Present therapies are inadequate, as evidenced by the low 5-year survival rate for brain cancer patients, with median survival at approximately 12 months. Glioma is the most common form of primary brain cancer, afflicting approximately 7,000 patients in the United States each year. These highly malignant cancers remain a significant unmet clinical need in oncology. GBM often has a high expression of EFGR (Epidermal Growth Factor Receptor), which is associated with poor prognosis. Several methods of inhibiting this receptor have been tested, including monoclonal antibodies, vaccines, and tyrosine kinase inhibitors. The investigators hypothesize that in patients with recurring GBM, intracranial superselective intra-arterial infusion of Cetuximab (CTX), at a dose of 250mg/m2 in conjunction with hypofractionated radiation, will be safe and efficacious and prevent tumor progression in patients with recurrent, residual GBM.

TERMINATED
Palbociclib Isethionate in Treating Younger Patients With Recurrent, Progressive, or Refractory Central Nervous System Tumors
Description

This phase I trial studies the side effects and best dose of palbociclib isethionate in treating younger patients with central nervous system tumors that have grown, come back, or not responded to treatment. Palbociclib isethionate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

WITHDRAWN
Efficacy of 68Ga-DOTATOC Positron Emission Tomography (PET) CT in Children and Young Adults With Brain Tumors
Description

This pilot clinical trial studies gallium Ga 68-edotreotide (68Ga-DOTATOC) positron emission tomography (PET)/computed tomography (CT) in finding brain tumors in younger patients. Diagnostic procedures, such as gallium Ga 68-edotreotide PET/CT imaging, may help find and diagnose brain tumors.

Conditions
Acoustic SchwannomaAdult Anaplastic AstrocytomaAdult Anaplastic EpendymomaAdult Anaplastic MeningiomaAdult Anaplastic OligodendrogliomaAdult Brain Stem GliomaAdult Choroid Plexus TumorAdult CraniopharyngiomaAdult Diffuse AstrocytomaAdult EpendymoblastomaAdult EpendymomaAdult Giant Cell GlioblastomaAdult GlioblastomaAdult GliosarcomaAdult Grade I MeningiomaAdult Grade II MeningiomaAdult MedulloblastomaAdult Meningeal HemangiopericytomaAdult Mixed GliomaAdult Myxopapillary EpendymomaAdult OligodendrogliomaAdult Papillary MeningiomaAdult Pilocytic AstrocytomaAdult Pineal Gland AstrocytomaAdult PineoblastomaAdult PineocytomaAdult Subependymal Giant Cell AstrocytomaAdult SubependymomaAdult Supratentorial Primitive Neuroectodermal Tumor (PNET)Childhood Choroid Plexus TumorChildhood CraniopharyngiomaChildhood EpendymoblastomaChildhood Grade I MeningiomaChildhood Grade II MeningiomaChildhood Grade III MeningiomaChildhood High-grade Cerebellar AstrocytomaChildhood High-grade Cerebral AstrocytomaChildhood Infratentorial EpendymomaChildhood Low-grade Cerebellar AstrocytomaChildhood Low-grade Cerebral AstrocytomaChildhood MedulloepitheliomaChildhood Supratentorial EpendymomaMeningeal MelanocytomaNewly Diagnosed Childhood EpendymomaRecurrent Adult Brain TumorRecurrent Childhood Anaplastic AstrocytomaRecurrent Childhood Anaplastic OligoastrocytomaRecurrent Childhood Anaplastic OligodendrogliomaRecurrent Childhood Brain Stem GliomaRecurrent Childhood Cerebellar AstrocytomaRecurrent Childhood Cerebral AstrocytomaRecurrent Childhood Diffuse AstrocytomaRecurrent Childhood EpendymomaRecurrent Childhood Fibrillary AstrocytomaRecurrent Childhood Gemistocytic AstrocytomaRecurrent Childhood Giant Cell GlioblastomaRecurrent Childhood GlioblastomaRecurrent Childhood Gliomatosis CerebriRecurrent Childhood GliosarcomaRecurrent Childhood MedulloblastomaRecurrent Childhood OligoastrocytomaRecurrent Childhood OligodendrogliomaRecurrent Childhood Pilocytic AstrocytomaRecurrent Childhood Pilomyxoid AstrocytomaRecurrent Childhood PineoblastomaRecurrent Childhood Pleomorphic XanthoastrocytomaRecurrent Childhood Protoplasmic AstrocytomaRecurrent Childhood Subependymal Giant Cell AstrocytomaRecurrent Childhood Supratentorial Primitive Neuroectodermal TumorRecurrent Childhood Visual Pathway and Hypothalamic GliomaRecurrent Childhood Visual Pathway GliomaUntreated Childhood Anaplastic AstrocytomaUntreated Childhood Anaplastic OligodendrogliomaUntreated Childhood Brain Stem GliomaUntreated Childhood Cerebellar AstrocytomaUntreated Childhood Cerebral AstrocytomaUntreated Childhood Diffuse AstrocytomaUntreated Childhood Fibrillary AstrocytomaUntreated Childhood Gemistocytic AstrocytomaUntreated Childhood Giant Cell GlioblastomaUntreated Childhood GlioblastomaUntreated Childhood Gliomatosis CerebriUntreated Childhood GliosarcomaUntreated Childhood MedulloblastomaUntreated Childhood OligoastrocytomaUntreated Childhood OligodendrogliomaUntreated Childhood Pilocytic AstrocytomaUntreated Childhood Pilomyxoid AstrocytomaUntreated Childhood PineoblastomaUntreated Childhood Pleomorphic XanthoastrocytomaUntreated Childhood Protoplasmic AstrocytomaUntreated Childhood Subependymal Giant Cell AstrocytomaUntreated Childhood Supratentorial Primitive Neuroectodermal TumorUntreated Childhood Visual Pathway and Hypothalamic GliomaUntreated Childhood Visual Pathway Glioma
ACTIVE_NOT_RECRUITING
Carboxylesterase-Expressing Allogeneic Neural Stem Cells and Irinotecan Hydrochloride in Treating Patients With Recurrent High-Grade Gliomas
Description

This phase I trial studies the side effects and best dose of carboxylesterase-expressing allogeneic neural stem cells when given together with irinotecan hydrochloride in treating patients with high-grade gliomas that have come back. Placing genetically modified neural stem cells into brain tumor cells may make the tumor more sensitive to irinotecan hydrochloride. Irinotecan hydrochloride may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving carboxylesterase-expressing allogeneic neural stem cells and irinotecan hydrochloride may be a better treatment for high-grade gliomas.

TERMINATED
18F-FDOPA PET/CT or PET/MRI in Measuring Tumors in Patients With Newly-Diagnosed or Recurrent Gliomas
Description

To evaluate 18F-FDOPA PET obtained from PET/CT or PET/MRI imaging in patients with newly diagnosed or recurrent gliomas.

Conditions
Adult Anaplastic EpendymomaAdult Anaplastic OligodendrogliomaAdult Brain Stem GliomaAdult Diffuse AstrocytomaAdult Giant Cell GlioblastomaAdult GlioblastomaAdult GliosarcomaAdult Mixed GliomaAdult OligodendrogliomaAdult Pilocytic AstrocytomaAdult Pineal Gland AstrocytomaAdult Subependymal Giant Cell AstrocytomaChildhood High-grade Cerebellar AstrocytomaChildhood High-grade Cerebral AstrocytomaChildhood Low-grade Cerebellar AstrocytomaChildhood Low-grade Cerebral AstrocytomaRecurrent Adult Brain TumorRecurrent Childhood Anaplastic AstrocytomaRecurrent Childhood Anaplastic OligoastrocytomaRecurrent Childhood Anaplastic OligodendrogliomaRecurrent Childhood Brain Stem GliomaRecurrent Childhood Cerebellar AstrocytomaRecurrent Childhood Cerebral AstrocytomaRecurrent Childhood Diffuse AstrocytomaRecurrent Childhood Fibrillary AstrocytomaRecurrent Childhood Gemistocytic AstrocytomaRecurrent Childhood Giant Cell GlioblastomaRecurrent Childhood GlioblastomaRecurrent Childhood Gliomatosis CerebriRecurrent Childhood GliosarcomaRecurrent Childhood OligoastrocytomaRecurrent Childhood OligodendrogliomaRecurrent Childhood Pilomyxoid AstrocytomaRecurrent Childhood Protoplasmic AstrocytomaRecurrent Childhood Subependymal Giant Cell AstrocytomaRecurrent Childhood Visual Pathway and Hypothalamic GliomaRecurrent Childhood Visual Pathway GliomaUntreated Childhood Anaplastic AstrocytomaUntreated Childhood Anaplastic OligoastrocytomaUntreated Childhood Anaplastic OligodendrogliomaUntreated Childhood Brain Stem GliomaUntreated Childhood Cerebellar AstrocytomaUntreated Childhood Cerebral AstrocytomaUntreated Childhood Diffuse AstrocytomaUntreated Childhood Fibrillary AstrocytomaUntreated Childhood Gemistocytic AstrocytomaUntreated Childhood Giant Cell GlioblastomaUntreated Childhood GlioblastomaUntreated Childhood Gliomatosis CerebriUntreated Childhood GliosarcomaUntreated Childhood OligoastrocytomaUntreated Childhood OligodendrogliomaUntreated Childhood Pilomyxoid AstrocytomaUntreated Childhood Protoplasmic AstrocytomaUntreated Childhood Subependymal Giant Cell AstrocytomaUntreated Childhood Visual Pathway and Hypothalamic GliomaUntreated Childhood Visual Pathway Glioma
TERMINATED
Temozolomide and Ascorbic Acid in Treating Patients With Recurrent High-Grade Glioma
Description

This phase I trial studies the side effects and best dose of ascorbic acid when given together with temozolomide in treating patients with high-grade glioma that has come back. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Ascorbic acid contains ingredients that may prevent or slow the growth of high-grade gliomas. Giving temozolomide with ascorbic acid may kill more tumor cells.

TERMINATED
Oncolytic HSV-1716 in Treating Younger Patients With Refractory or Recurrent High Grade Glioma That Can Be Removed By Surgery
Description

This phase I trial studies the side effects and the safety of injecting HSV1716 (a new experimental therapy) into or near the tumor resection cavity. The injection will be done at the time of surgery. HSV1716 is a virus that has a gene which has been changed or removed (mutated) in such a way that lets the virus multiply in dividing cells of the tumor and kills the tumor cells.

COMPLETED
A Study of Ad-RTS-hIL-12 With Veledimex in Subjects With Glioblastoma or Malignant Glioma
Description

This research study involves an investigational product: Ad-RTS-hIL-12 given with veledimex for production of human IL-12. IL-12 is a protein that can improve the body's natural response to disease by enhancing the ability of the immune system to kill tumor cells and may interfere with blood flow to the tumor. The main purpose of this study is to evaluate the safety and tolerability of a single tumor injection of Ad-RTS-hIL-12 given with oral veledimex.

COMPLETED
Genetically Modified Neural Stem Cells, Flucytosine, and Leucovorin for Treating Patients With Recurrent High-Grade Gliomas
Description

This phase I trial studies the side effects and determines the best dose of genetically modified neural stem cells and flucytosine when given together with leucovorin for treating patients with recurrent high-grade gliomas. Neural stem cells can travel to sites of tumor in the brain. The neural stem cells that are being used in this study were genetically modified express the enzyme cytosine deaminase (CD), which converts the prodrug flucytosine (5-FC) into the chemotherapy agent 5-fluorouracil (5-FU). Leucovorin may help 5-FU kill more tumor cells. The CD-expressing neural stem cells are administered directly into the brain. After giving the neural stem cells a few days to spread out and migrate to tumor cells, research participants take a 7 day course of oral 5-FC. (Depending on when a research participant enters the study, they may also be given leucovorin to take with the 5-FC.) When the 5-FC crosses into brain, the neural stem cells convert it into 5-FU, which diffuses out of the neural stem cells to preferentially kill rapidly dividing tumor cells while minimizing toxicity to healthy tissues. A Rickham catheter, placed at the time of surgery, will be used to administer additional doses of NSCs every two weeks, followed each time by a 7 day course of oral 5-FC (and possibly leucovorin). This neural stem cell-based anti-cancer strategy may be an effective treatment for high-grade gliomas. Funding Source - FDA OOPD

COMPLETED
Study of a Retroviral Replicating Vector Given Intravenously to Patients Undergoing Surgery for Recurrent Brain Tumor
Description

This is a multicenter study evaluating the safety and tolerability of Toca 511 administered intravenously to patients with recurrent or progressive Grade III or Grade IV Gliomas who have elected to undergo surgical removal of their tumor. Patients meeting all of the inclusion and none of the exclusion criteria will receive an initial dose of Toca 511 administered as an intravenous, bolus injection, followed approximately 11 days later by an additional dose injected into the walls of the resection cavity at the time of planned tumor resection. Approximately 6 weeks later, patients will begin treatment with oral Toca FC, an antifungal agent, and repeated every 4 weeks. All patients enrolled in this study will be encouraged to participate in a continuation protocol that enables additional Toca FC administration and the collection of long-term safety and response data.

COMPLETED
Adavosertib and Local Radiation Therapy in Treating Children With Newly Diagnosed Diffuse Intrinsic Pontine Gliomas
Description

This phase I trial studies the side effects and the best dose of adavosertib when given together with local radiation therapy in treating children with newly diagnosed diffuse intrinsic pontine gliomas. Adavosertib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Radiation therapy uses high energy x-rays, gamma rays, neutrons, protons, or other sources to kill tumor cells and shrink tumors. Giving adavosertib with local radiation therapy may work better than local radiation therapy alone in treating diffuse intrinsic pontine gliomas.

RECRUITING
Evaluating the Expression Levels of MicroRNA-10b in Patients With Gliomas
Description

MicroRNAs (miRNA) are molecular biomarkers that post-transcriptionally control target genes. Deregulated miRNA expression has been observed in diverse cancers. In high grade gliomas, known as glioblastomas, the investigators have identified an oncogenic miRNA, miRNA-10b (mir-10b) that is expressed at higher levels in glioblastomas than in normal brain tissue. This study tests the hypothesis that in primary glioma samples mir-10b expression patterns will serve as a prognostic and diagnostic marker. This study will also characterize the phenotypic and genotypic diversity of glioma subclasses. Furthermore, considering the critical function of anti-mir-10b in blocking established glioblastoma growth, the investigators will test in vitro the sensitivity of individual primary tumors to anti-mir-10b treatment. Tumor, blood and cerebrospinal fluid samples will be obtained from patients diagnosed with gliomas over a period of two years. These samples will be examined for mir-10b expression levels. Patient survival, as well as tumor grade and genotypic variations will be correlated to mir-10b expression levels.

TERMINATED
Phase I/II Trial of AXL1717 in the Treatment of Recurrent Malignant Astrocytomas
Description

This is a single-center, open-label, non-randomized, Phase I/IIa study to investigate the safety, tolerability, and antitumor efficacy of AXL1717 (picropodophyllin as active agent formulated in an oral suspension; PPP) in patients with recurrent malignant astrocytomas (glioblastoma, gliosarcoma, anaplastic astrocytoma, anaplastic oligodendroglioma, anaplastic oligoastrocytoma, and anaplastic ependymoma). Patients will be treated for up to 5 cycles. A treatment cycle is defined as 28 days+7 days rest (28+7 days during cycle 1 to 4, and 28 days during cycle 5). The following cycle will not be started until the treatment continuation criteria are fulfilled. Concomitant supportive therapies will be allowed.

COMPLETED
Vaccine Therapy With or Without Sirolimus in Treating Patients With NY-ESO-1 Expressing Solid Tumors
Description

This phase I trial studies the side effects and best schedule of vaccine therapy with or without sirolimus in treating patients with cancer-testis antigen (NY-ESO-1) expressing solid tumors. Biological therapies, such as sirolimus, may stimulate the immune system in different ways and stop tumor cells from growing. Vaccines made from a person's white blood cells mixed with tumor proteins may help the body build an effective immune response to kill tumor cells that express NY-ESO-1. Infusing the vaccine directly into a lymph node may cause a stronger immune response and kill more tumor cells. It is not yet known whether vaccine therapy works better when given with or without sirolimus in treating solid tumors.

Conditions
Anaplastic AstrocytomaAnaplastic OligoastrocytomaAnaplastic OligodendrogliomaEstrogen Receptor NegativeEstrogen Receptor PositiveGlioblastomaHormone-Resistant Prostate CancerMetastatic Prostate CarcinomaMetastatic Renal Cell CancerRecurrent Adult Brain NeoplasmRecurrent Bladder CarcinomaRecurrent Breast CarcinomaRecurrent Colorectal CarcinomaRecurrent Esophageal CarcinomaRecurrent Gastric CarcinomaRecurrent Hepatocellular CarcinomaRecurrent Lung CarcinomaRecurrent MelanomaRecurrent Ovarian CarcinomaRecurrent Prostate CarcinomaRecurrent Renal Cell CarcinomaRecurrent Uterine Corpus CarcinomaResectable Hepatocellular CarcinomaSarcomaStage IA Breast CancerStage IA Ovarian CancerStage IA Uterine Corpus CancerStage IB Breast CancerStage IB Ovarian CancerStage IB Uterine Corpus CancerStage IC Ovarian CancerStage II Uterine Corpus CancerStage IIA Breast CancerStage IIA Lung CarcinomaStage IIA Ovarian CancerStage IIB Breast CancerStage IIB Esophageal CancerStage IIB Lung CarcinomaStage IIB Ovarian CancerStage IIB Skin MelanomaStage IIC Ovarian CancerStage IIC Skin MelanomaStage IIIA Breast CancerStage IIIA Esophageal CancerStage IIIA Lung CarcinomaStage IIIA Ovarian CancerStage IIIA Skin MelanomaStage IIIA Uterine Corpus CancerStage IIIB Breast CancerStage IIIB Esophageal CancerStage IIIB Ovarian CancerStage IIIB Skin MelanomaStage IIIB Uterine Corpus CancerStage IIIC Breast CancerStage IIIC Esophageal CancerStage IIIC Ovarian CancerStage IIIC Skin MelanomaStage IIIC Uterine Corpus CancerStage IV Bladder Urothelial CarcinomaStage IV Esophageal CancerStage IV Ovarian CancerStage IV Prostate CancerStage IV Skin MelanomaStage IVA Uterine Corpus CancerStage IVB Uterine Corpus Cancer
COMPLETED
Study of a Retroviral Replicating Vector Combined With a Prodrug to Treat Patients Undergoing Surgery for a Recurrent Malignant Brain Tumor
Description

This is a multicenter study evaluating the safety and tolerability of increasing doses of Toca 511, a retroviral replicating vector, injected into the resection cavity of patients with Grade III or Grade IV Gliomas who have elected to undergo surgical removal of their tumor. Approximately 6 weeks after injection of Toca 511, patients will begin an oral courses of Toca FC, an antifungal agent. These one week courses of Toca FC will be repeated during the approximately 30 week study. Two separate cohorts of patients treated with Toca 511 and Toca FC will also be evaluated with either of the following standard treatments for glioma: lomustine or bevacizumab. After completion of this study, all patients will be eligible for enrollment and encouraged to enter a long-term continuation protocol that enables additional Toca FC treatment cycles to be given, as well as permits the collection of long-term safety and survival data.

COMPLETED
BIBF 1120 for Recurrent High-Grade Gliomas
Description

BIBF 1120 is a newly discovered compound that may stop cancer cells from growing abnormally. This drug is currently being used in treatment for other cancers in research studies and information from those other research studies suggests that this agent, BIBF 1120, may help to stop recurrent malignant glioma cells from multiplying and it may also prevent the growth of new blood vessels at the site of the tumor. In this research study, the investigators are looking to see how well BIBF 1120 works in patients with recurrent malignant gliomas.

TERMINATED
Plerixafor (AMD3100) and Bevacizumab for Recurrent High-Grade Glioma
Description

Plerixafor in combination with bevacizumab is a drug combination that may stop cancer cells from growing abnormally. Bevacizumab, also known as Avastin, is FDA approved for use in patients with recurrent glioblastoma and has been studied extensively in other types of solid tumors. Plerixafor, also known as Mozobil, is FDA approved for use in patients with non-Hodgkin's lymphoma and multiple myeloma and has been used in treatment for other cancers. Information from experiments in laboratories suggests that the combination of plerixafor and bevacizumab may help prevent the growth of gliomas. Part 1: The investigators are looking for the highest dose of plerixafor that can be given safely with bevacizumab (with a 21 days on/7 days off regimen of plerixafor). The investigators will also do blood tests to find out how the body uses and breaks down the drug combination. Part 2: The investigators are looking to see if plerixafor can get past the blood-brain barrier and into brain tumors. The investigators will also do blood tests to find out how the body uses and breaks down the drug combination. Part 3: The investigators are looking for for more information re: safety and tolerability of plerixafor in combination with bevacizumab (with a 28 days on/0 days off regimen of plerixafor). The investigators will also do blood tests to find out how the body uses and breaks down the drug combination.

COMPLETED
Vaccine Therapy and Sargramostim in Treating Patients With Malignant Glioma
Description

This phase I trial studies the side effects of vaccine therapy when given together with sargramostim in treating patients with malignant glioma. Vaccines made from survivin peptide may help the body build an effective immune response to kill tumor cells. Colony-stimulating factors, such as sargramostim, may increase the number of white blood cells and platelets found in bone marrow or peripheral blood. Giving vaccine therapy and sargramostim may be a better treatment for malignant glioma.

COMPLETED
Bafetinib in Treating Patients With Recurrent High-Grade Glioma or Brain Metastases
Description

RATIONALE: Bafetinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. PURPOSE: This clinical trial studies bafetinib in treating patients with recurrent high-grade glioma or brain metastases.

COMPLETED
Vorinostat and Radiation Therapy Followed by Maintenance Therapy With Vorinostat in Treating Younger Patients With Newly Diagnosed Diffuse Intrinsic Pontine Glioma
Description

This phase I/II trial studies the side effects and best dose of vorinostat and to see how well it works when given together with radiation therapy followed by maintenance therapy with vorinostat in treating younger patients with newly diagnosed diffuse intrinsic pontine glioma (a brainstem tumor). Vorinostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Radiation therapy uses high-energy x-rays to kill tumor cells. Giving vorinostat together with radiation therapy may kill more tumor cells.

COMPLETED
A Pilot Feasibility Study of Oral 5-Fluorocytosine and Genetically-Modified Neural Stem Cells Expressing E.Coli Cytosine Deaminase for Treatment of Recurrent High Grade Gliomas
Description

RATIONALE: Genetically-modified neural stem cells (NSCs) that convert 5-fluorocytosine (5-FC) into the chemotherapy agent 5-FU (fluorouracil) at sites of tumor in the brain may be an effective treatment for glioma. PURPOSE: This clinical trial studies genetically-modified NSCs and 5-FC in patients undergoing surgery for recurrent high-grade gliomas.

COMPLETED
A Study of a Retroviral Replicating Vector Combined With a Prodrug Administered to Patients With Recurrent Malignant Glioma
Description

This is a multicenter, open-label, ascending-dose trial of the safety and tolerability of increasing doses of Toca 511, a Retroviral Replicating Vector (RRV), administered to patients with recurrent high grade glioma (rHGG) who have undergone surgery followed by adjuvant radiation therapy and chemotherapy. Patients will receive Toca 511 either via stereotactic, transcranial injection into their tumor or as an intravenous injection given daily for 3 \& 5 days, depending on cohort. Approximately 3-4 weeks following injection of the RRV, treatment with Toca FC, an antifungal agent, will commence and will be repeated approximately every 6 weeks until study completion. After completion of this study, all patients will be eligible for enrollment and encouraged to enter a long-term continuation protocol that enables additional Toca FC treatment cycles to be given, as well as permits the collection of long-term safety and survival data.

COMPLETED
Cilengitide in Treating Younger Patients With Recurrent or Progressive High-Grade Glioma That Has Not Responded to Standard Therapy
Description

This phase II trial studies how well cilengitide works in treating younger patients with recurrent or progressive high-grade glioma that has not responded to standard therapy. Cilengitide may stop the growth of tumor cells by blocking blood flow to the tumor.