17 Clinical Trials for Various Conditions
People with brainstem stroke, advanced amyotrophic lateral sclerosis (ALS, also known as Lou Gehrig's disease), or other disorders can become unable to move or speak despite being awake and alert. In this project, the investigators seek to further translate knowledge about interpreting brain signals related to movement, and to further develop an intracortical brain-computer interface (iBCI) that could restore rapid and intuitive use of communication apps on tablet computers by people with paralysis.
The goal of this project is to test a new AAC-BCI device comparing gel and dry electrode headgear used for communication while providing clinical care. Innovative resources will be employed to support the standard of care without considering limitations based on service billing codes. Clinical services will include AAC assessment, AAC-BCI device and treatment to individuals with minimal movement due to amyotrophic lateral sclerosis (ALS), brain stem strokes, severe cerebral palsy, traumatic brain injury (TBI) and their family support person. This is a descriptive study designed to measure and monitor the communication performance of individuals using the AAC-BCI, any other AAC strategies, their user satisfaction and perceptions of communication effectiveness, and the satisfaction of the family support persons.
This project adds to non-invasive BCIs for communication for adults with severe speech and physical impairments due to neurodegenerative diseases. Researchers will optimize \& adapt BCI signal acquisition, signal processing, natural language processing, \& clinical implementation. BCI-FIT relies on active inference and transfer learning to customize a completely adaptive intent estimation classifier to each user's multi-modality signals simultaneously. 3 specific aims are: 1. develop \& evaluate methods for on-line \& robust adaptation of multi-modal signal models to infer user intent; 2. develop \& evaluate methods for efficient user intent inference through active querying, and 3. integrate partner \& environment-supported language interaction \& letter/word supplementation as input modality. The same 4 dependent variables are measured in each SA: typing speed, typing accuracy, information transfer rate (ITR), \& user experience (UX) feedback. Four alternating-treatments single case experimental research designs will test hypotheses about optimizing user performance and technology performance for each aim.Tasks include copy-spelling with BCI-FIT to explore the effects of multi-modal access method configurations (SA1.3a), adaptive signal modeling (SA1.3b), \& active querying (SA2.2), and story retell to examine the effects of language model enhancements. Five people with SSPI will be recruited for each study. Control participants will be recruited for experiments in SA2.2 and SA3.4. Study hypotheses are: (SA1.3a) A customized BCI-FIT configuration based on multi-modal input will improve typing accuracy on a copy-spelling task compared to the standard P300 matrix speller. (SA1.3b) Adaptive signal modeling will allow people with SSPI to typing accurately during a copy-spelling task with BCI-FIT without training a new model before each use. (SA2.2) Either of two methods of adaptive querying will improve BCI-FIT typing accuracy for users with mediocre AUC scores. (SA3.4) Language model enhancements, including a combination of partner and environmental input and word completion during typing, will improve typing performance with BCI-FIT, as measured by ITR during a story-retell task. Optimized recommendations for a multi-modal BCI for each end user will be established, based on an innovative combination of clinical expertise, user feedback, customized multi-modal sensor fusion, and reinforcement learning.
The CortiCom system consists of 510(k)-cleared components: platinum PMT subdural cortical electrode grids, a Blackrock Microsystems patient pedestal, and an external NeuroPort Neural Signal Processor. Up to two grids will be implanted in the brain, for a total channel count of up to 128 channels, for six months. In each participant, the grid(s) will be implanted over areas of cortex that encode speech and upper extremity movement.
The purpose of this research study is to demonstrate the safety and efficacy of using two CRS Arrays (microelectrodes) for long-term recording of brain motor cortex activity and microstimulation of brain sensory cortex.
The purpose of this research study is to demonstrate that individuals with upper limb paralysis due to spinal cord injury, brachial plexus injury, amyotrophic lateral sclerosis and brain stem stroke can successfully achieve direct brain control of assistive devices using an electrocorticography (ECoG)-based brain computer interface system.
The Synchron motor neuroprosthesis (MNP) is intended to be used in subjects with severe motor impairment, unresponsive to medical or rehabilitative therapy and a persistent functioning motor cortex. The purpose of this research is to evaluate safety and feasibility. The MNP is a type of implantable brain computer interface which bypasses dysfunctional motor neurons. The device is designed to restore the transmission of neural signal from the cerebral cortex utilized for neuromuscular control of digital devices, resulting in a successful execution of non-mechanical digital commands.
The purpose of this research study is to demonstrate the safety and efficacy of using two NeuroPort Arrays (electrodes) for long-term recording of brain activity.
This study is designed to allow researchers to use transelectrical stimulation to explore the function of the human nervous system and improve diagnosis of neurological disorders. Transcranial electrical stimulation is a non-invasive technique that can be used to stimulate brain activity and gather information about brain function. Electrical stimulation involves placing electrodes on the scalp or skin and passing an electrical current between them. When this is done, an electrical field is created that activates areas of the brain that control muscles. Muscle activity as a result of the stimulation can be recorded and analyzed.
A study of stereotactic, intracerebral injection of CTX0E03 neural stem cells into patients with moderate to moderately severe disability as a result of an ischemic stroke.
The purpose of this study is to use an intravenous infusion of allogeneic human mesenchymal stem cells (Allo-hMSCs) to treat an acute ischemic stroke condition.
This study aims to determine the safety of HB-adMSC infusion and treatment effects of HB-adMSC infusion on brain structure, neurocognitive/functional outcomes, and neuroinflammation after subacute and chronic neurological injury in adults.
The primary objective of this study is to determine the efficacy of a single intravenous infusion of unrelated donor umbilical cord blood (UCB) for improving functional outcomes in patients with ischemic stroke. Eligible subjects will receive an intravenous infusion of UCB or placebo 3-10 days following stroke. Subjects will not receive immunosuppressive or myeloablative medications prior to the infusion. Subjects will be followed for one year post infusion for safety and efficacy. Assessments will examine safety and tolerability of the infusion, change in neurological symptoms, change in quality of life, and emotional and cognitive status. Assessments will occur at 24 hours post infusion, and at 30, 90, 180 and 365 days post infusion.
This is a human clinical study involving the isolation of autologous bone marrow derived stem cells (BMSC) and transfer to the vascular system and inferior 1/3 of the nasal passages in order to determine if such a treatment will provide improvement in neurologic function for patients with certain neurologic conditions. http://mdstemcells.com/nest/
The specific aims of this study are: 1. To determine if Human Umbilical Cord Blood (hUCB) infusion is safe in children with perinatal arterial ischemic stroke (AIS). 2. To determine if late functional outcome, physiologic response, and anatomic findings are changed following hUCB infusion in children with perinatal AIS.
The primary objective of the study is to assess the safety and tolerability of Human Placenta-Derived Cells (PDA001) at 3 different dose levels versus placebo (vehicle control) administered intravenously in subjects following ischemic stroke. The secondary objective of the study is to assess the effect of PDA001 on improvement in clinical function following ischemic stroke.
The purpose of this study is to demonstrate the safety of the delivery of ALD-401 by intracarotid infusion and to assess efficacy of treatment in subjects who have had unilateral, predominately cortical, ischemic strokes in the middle cerebral artery (MCA). ALD-401 is made from the stroke patient's bone marrow and infused 13-19 days after the stroke.