31 Clinical Trials for Various Conditions
A repetitive, non-invasive brain stimulation technique referred to as theta burst stimulation can modulate corticomotor excitability and therefore has great rehabilitative potential for individuals with neurologic deficits, including individuals with spinal cord injury (SCI). In particular, intermittent theta burst stimulation (iTBS) can increase corticomotor excitability and may be a useful adjunct to physical rehabilitation to promote motor re-education after upper limb reconstruction in individuals with tetraplegia. Upper limb reconstruction involves surgical transfer of a non-paralyzed tendon or nerve with a redundant or less important function to perform a more critical function. Upper limb reconstruction is intended to help individuals achieve their goals related to activities of daily living and independence in the community. Outcomes after reconstruction are variable and depend largely on the efficacy of motor re-education of the transferred muscle to perform a new function. The long-term goal of our research is to determine whether iTBS combined with physical rehabilitation can improve motor re-education after reconstruction. As a first step, the purpose of this proposal is to determine the effect of iTBS on corticomotor excitability of proximal muscles in nonimpaired individuals and two groups of individuals with tetraplegia: individuals with and without upper limb reconstruction.
The PRIME Study is a first-in-human early feasibility study to evaluate the initial clinical safety and device functionality of the Neuralink N1 Implant and R1 Robot device designs in participants with tetraparesis or tetraplegia. The N1 Implant is a skull-mounted, wireless, rechargeable implant connected to electrode threads that are implanted in the brain by the R1 Robot, a robotic electrode thread inserter.
Neuralis is an innovative assistive technology designed for individuals with severe neuromuscular conditions, enabling wheelchair control through EEG signals. This study aims to assess the safety, feasibility, and efficacy of Neuralis in restoring mobility and independence. The device is a discreet EEG headset which specializes in decoding signals from visual cortex, allowing users to initiate precise wheelchair movements through focused attention. This research seeks to demonstrate Neuralis' potential in revolutionizing assistive technology by offering a non-invasive, user-friendly solution for individuals facing motor impairments, ultimately enhancing their quality of life.
The Synchron motor neuroprosthesis (MNP) is intended to be used in subjects with severe motor impairment, unresponsive to medical or rehabilitative therapy and a persistent functioning motor cortex. The purpose of this research is to evaluate safety and feasibility. The MNP is a type of implantable brain computer interface which bypasses dysfunctional motor neurons. The device is designed to restore the transmission of neural signal from the cerebral cortex utilized for neuromuscular control of digital devices, resulting in a successful execution of non-mechanical digital commands.
The goal of this observational study is to determine if nerve transfer surgeries improve upper extremity function and quality of life in patients with a high level cervical spinal cord injury. Participants will: * undergo standard of care pre- and post-op testing and study exams * complete pre- and post-questionnaires * undergo standard of care nerve transfer surgeries * follow-up with surgeon at 6/12/18/24/36 and potentially at 48 months * attend therapy at local therapist for up to 2 years postop.
This is a single-cohort early feasibility trial to determine whether an investigational device called the Bidirectional Neural Bypass System can lead to the restoration of movement and sensation in the hand and wrist of up to three individuals with tetraplegia.
This study is for people who have a paralyzed arm and hand from a spinal cord injury, who have also received a recording electrode array in the brain as part of the BrainGate study. The study will look at the ability of these participants to control different grasping patterns of the hand, both in virtual reality and in his/her actual hand. Movement of the participant's hand is controlled by a functional electrical stimulation (FES) system, which involves small electrodes implanted in the arm, shoulder and hand that use small electrical currents to activate the appropriate muscles.
The ability to maintain normal body temperature (Tcore) is impaired in persons with tetraplegia: subnormal Tcore and vulnerability to hypothermia (\<95 F) have been documented in this population after exposure to even mild environmental temperatures. However, no work to date has addressed the effect of subnormal Tcore on cognitive performance in persons with tetraplegia despite studies with able-bodied (AB) individuals that have documented progressive decline in various aspects of cognitive performance associated with the magnitude of the depression in Tcore. The investigators' study will confirm and extend their initial observations in persons with higher cord lesions who have subnormal Tcore to show that cognitive performance will be improved by raising Tcore to euthermic levels. This improvement should be associated with greater function and independence, reintegration into society, and an improved quality of life. Specific Aims: During exposure to 95 F for up to 120 minutes in the seated position, the investigators' aims are: Primary Specific Aim: To determine if a modest rise in Tcore to euthermic levels has a positive effect on cognitive performance (attention, working memory, processing speed, and executive function) in persons with higher-level spinal cord injury (SCI). Primary Hypothesis: Based on the investigators' pilot data: (1) 80% of persons with SCI will demonstrate an increase of 1 F in Tcore, while none of the AB controls will demonstrate such an increase; (2) 80% of persons with SCI will have an improvement of at least one T-score in Stroop Interference scores (a validated measure of executive function), while none of the AB controls will demonstrate a change in cognitive performance. Secondary Specific Aim: To determine changes in: (1) The average of distal skin temperatures; (2) Sweat rate; and (3) Subjective rating of thermal sensitivity. Secondary Hypothesis: Persons with SCI will have less of a percent change in average distal skin temperatures and sweat rate, and will report blunted ratings of thermal sensitivity compared to that of AB controls.
The ability to maintain normal core body temperature (Tcore = 98.6°F) is impaired in persons with a cervical spinal cord injury (tetraplegia). Despite the known deficits in the ability of persons with spinal cord injury (SCI) to maintain Tcore, and the effects of hypothermia to impair mental function in able-bodied (AB) persons, there has been no work to date addressing these issues in persons with tetraplegia. Primary Aim: To determine if exposure of up to 2 hours to cool temperatures (64°F) causes Tcore to decrease in persons with tetraplegia, and if that decrease is associated with a decrease in cognitive function. Primary Hypotheses: Based on our pilot data: (1) 66% of persons with tetraplegia and none of the matched controls will demonstrate a decline of 1.8°F in Tcore; (2) 80% of persons with tetraplegia and 30% of controls will have a decline of at least one T-score in Stroop Interference scores (a measure of executive function). Secondary Aim: To determine the change in: (1) distal skin temperature, (2) metabolic rate, and (3) thermal sensitivity. Secondary Hypothesis: Persons with tetraplegia will have less of a percent change in average distal skin temperatures and metabolic rate, and report lower thermal sensitivity ratings compared with AB controls. Tertiary Aim: To determine if a 10 mg dose of an approved blood pressure-raising medicine (midodrine hydrochloride) will (1) reduce the decrease in Tcore and (2) prevent or delay the decline in cognitive performance in the group with tetraplegia compared to the exact same procedures performed on the day with no medicine (Visit 1) in that same group. Tertiary Hypothesis: Through administering a one-time dose of midodrine, the medicine-induced decreased blood flow to the skin will lessen the decline in Tcore and prevent or delay the associated decline in cognitive performance compared to the changes in Tcore and cognitive performance during cool temperature exposure without midodrine in the same group with tetraplegia.
This research study is being done to develop a brain controlled medical device, called a brain-machine interface or BMI, that will provide people with a spinal cord injury some ability to control an external device such as a computer cursor or robotic limb by using their thoughts. Developing a brain-machine interface (BMI) is very difficult and currently only limited technology exists in this area of neuroscience. The device in this study involves implanting very fine recording electrodes into areas of the brain that are known to create arm movement plans and provide hand grasping information. These movement and grasp plans would then normally be sent to other regions of the brain to execute the actual movements. By tying into those pathways and sending the movement plan signals to a computer instead, the investigators can translate the movement plans into actual movements by a computer cursor or robotic limb. The device being used in this study is called the NeuroPort Array and is surgically implanted in the brain. This device and the implantation procedure are experimental which means that it has not been approved by the Food and Drug Administration (FDA). One NeuroPort Array consists of a small grid of electrodes that will be implanted in brain tissue with a small cable that runs from the electrode grid to a small hourglass-shaped pedestal. This pedestal is designed to be attached to the skull and protrude though the scalp to allow for connection with the computer equipment. The investigators hope to learn how safe and effective the NeuroPort Array is in controlling computer generated images and real world objects, such as a robotic arm, using imagined movements of the arms and hands. To accomplish this goal, two NeuroPort Arrays will be used.
The ability to maintain normal body core temperature (Tcore = 98.6°F) is impaired in persons with tetraplegia. Despite the known challenges to the ability of persons with spinal cord injury (SCI) to maintain Tcore, and the effects of hypothermia to impair mental function in able-bodied (AB) persons, there has been no work to date addressing these issues in persons with tetraplegia. The aim of this study is to determine if exposure of up to 2 hrs to cool temperatures (64°F) causes body core temperature to decrease in persons with tetraplegia and if that decrease is related to a decrease in mental performance. After sitting in a cool (64°F) room for up to 2 hours the investigators hypotheses are: Hypotheses (1): Tcore of most of the persons with tetraplegia will decline approximately 1.8°F (e.g., 98.6 to 96.8°F) while Tcore of controls will not decline at all; (2) Most of the persons with tetraplegia will show a decline in mental performance (memory or clear-headedness) while only some of AB controls will show a decline. The second aim of this study is to determine if a 10 mg dose of an approved blood pressure raising medicine (midodrine hydrochloride) will (1) reduce the decrease in body core temperature and (2) prevent or delay the decline in mental performance in the group with tetraplegia compared to the exact same procedures performed on the day with no medicine (Visit 1) in the same group. Hypotheses (3 \& 4): The changes in blood flow to the skin caused by taking a one-time dose of midodrine will lessen the decline in Tcore and prevent or delay the decline in mental performance compared to the changes in Tcore and mental performance during cool temperature exposure without midodrine in the group with tetraplegia.
The purpose of this study is to obtain preliminary device safety information and demonstrate proof of principle (feasibility) of the ability of people with tetraplegia to control a computer cursor and other assistive devices with their thoughts.
The purpose of this study is to evaluate the effectiveness of an implanted stimulator for providing hand function to individuals with cervical level spinal cord injury. The device stimulates the paralyzed muscles of the hand and forearm. The user of the device controls the stimulation by moving muscles that are not paralyzed, such as a wrist or neck muscle. The ability of the user to pick up and move objects, as well as perform various activities such as eating, drinking, and writing.
The CONVOY Study is a clinical trial designed to explore the feasibility of participants from the PRIME Study (NCT06429735) using the N1 Implant to control various assistive devices. The main goal is to determine whether participants can successfully modulate their brain activity to control devices, such as an Assistive Robotic Arm (ARA). This study will assess the effectiveness, consistency, and safety of neural control using the ARA and other assistive devices.
Current treatment strategies of acute cervical spinal cord injuries remain limited. Treatment options that provide meaningful improvements in patient quality of like and long-term functional independence will provide a significant public health impact. Specific aim: Measure the efficacy of nerve transfer surgery in the treatment of patients with complete spinal cord injuries with no hand function. Optimize the efficiency of nerve transfer surgery by evaluating patient outcomes in relation to patient selection and quality of life and functional independence.
The Bidirectional Cortical Neuroprosthetic System (BiCNS) consists of NeuroPort Microelectrode Array Systems and NeuroPort Electrodes (Sputtered Iridium Oxide Film), Patient Pedestals, the NeuroPort BioPotential Signal Processing System, and the CereStim C96 Programmable Stimulator. The goals of this early feasibility study consist of safety and efficacy evaluations of this device.
This research study is being conducted to develop a brain controlled medical device, called a brain-machine interface. The device will provide people with a spinal cord injury some ability to control an external device such as a computer cursor or robotic limb by using their thoughts along with sensory feedback. Development of a brain-machine interface is very difficult and currently only limited technology exists in this area of neuroscience. Other studies have shown that people with high spinal cord injury still have intact brain areas capable of planning movements and grasps, but are not able to execute the movement plans. The device in this study involves implanting very fine recording electrodes into areas of the brain that are known to create arm movement plans and provide hand grasping information and sense feeling in the hand and fingers. These movement and grasp plans would then normally be sent to other regions of the brain to execute the actual movements. By tying into those pathways and sending the movement plan signals to a computer instead, the investigators can translate the movement plans into actual movements by a computer cursor or robotic limb. A key part of this study is to electrically stimulate the brain by introducing a small amount of electrical current into the electrodes in the sensory area of the brain. This will result in the sensation of touch in the hand and/or fingers. This stimulation to the brain will occur when the robotic limb touches the object, thereby allowing the brain to "feel" what the robotic arm is touching. The device being used in this study is called the Neuroport Array and is surgically implanted in the brain. This device and the implantation procedure are experimental which means that it has not been approved by the Food and Drug Administration (FDA). One Neuroport Array consists of a small grid of electrodes that will be implanted in brain tissue and a small cable that runs from the electrode grid to a small hourglass-shaped pedestal. This pedestal is designed to be attached to the skull and protrude through the scalp to allow for connection with the computer equipment. The top portion of the pedestal has a protective cover that will be in place when the pedestal is not in use. The top of this pedestal and its protective cover will be visible on the outside of the head. Three Neuroport Arrays and pedestals will be implanted in this study so three of these protective covers will be visible outside of the head. It will be possible to cover these exposed portions of the device with a hat or scarf. The investigators hope to learn how safe and effective the Neuroport array plus stimulation is in controlling computer generated images and real world objects, such as a robotic arm, using imagined movements of the arms and hands.
The investigators objective is to run human clinical trials in which brain activity recorded through a "brain-chip" implanted in the human brain can be used to provide novel communication capabilities to severely paralyzed individuals by allowing direct brain-control of a computer interface. A prospective, longitudinal, single-arm early feasibility study will be used to examine the safety and effectiveness of using a neural communication system to control a simple computer interface and a tablet computer. Initial brain control training will occur in simplified computer environments, however, the ultimate objective of the clinical trial is to allow the human patient autonomous control over the Google Android tablet operating system. Tablet computers offer a balance of ease of use and functionality that should facilitate fusion with the BMI. The tablet interface could potentially allow the patient population to make a phone call, manage personal finances, watch movies, paint pictures, play videogames, program applications, and interact with a variety of "smart" devices such as televisions, kitchen appliances, and perhaps in time, devices such as robotic limbs and smart cars. Brain control of tablet computers has the potential to greatly improve the quality of life of severely paralyzed individuals. Five subjects will be enrolled, each implanted with the NCS for a period of at least 53 weeks and up to 313 weeks. The study is expected to take at least one year and up to six years in total.
The purpose of this research study is to demonstrate the safety and efficacy of using two CRS Arrays (microelectrodes) for long-term recording of brain motor cortex activity and microstimulation of brain sensory cortex.
Individuals with chronic cervical spinal cord injury will complete a 10-week training protocol where participants receive non-invasive brain stimulation and feedback on the size of the corresponding muscle response (wrist extensor). Investigators will assess the impact of the brain stimulation training on 1) the brain-to-spinal cord-to-muscle connection and 2) motor functions of the arm and hand. Also, brain and spine magnetic resonance imaging will be collected before and after the training. The imaging measurements will tell investigators about how spinal damage, brain function, and brain structure relate to motor presentation and the response to the training.
People with spinal cord injury (SCI) experience a host of secondary complications that can impact their quality of life and functional independence. One of the more prevalent complications is spasticity, which occurs in response to spinal cord damage and the resulting disruption of motor pathways. Common symptoms include spasms and stiffness, and can occur more than once per hour in many people with SCI. Spasticity can have a negative impact over many quality of life domains, including loss of functional independence, activity limitations, and even employment. Its impact on health domains is also pronounced, with many people who have spasticity reporting mood disorders, depression, pain, sleep disturbances, and contractures. Spasticity can interfere with post-injury rehabilitation and lead to hospitalization. There are many treatments for spasticity in this population. However, many do not have long-term efficacy, and, if they do, they are often pharmacological in nature and carry side effects that could limit function or affect health. The goal of this pilot, randomized-controlled study is to investigate the potential efficacy and safety of a non-invasive treatment with a low side effect profile, extracorporeal shockwave therapy (ESWT). ESWT has shown some benefits in people with post-stroke spasticity with no long term side effects. Thirty individuals with chronic, traumatic SCI will be recruited. Fifteen will be provided with ESWT while the other fifteen will be given a sham treatment. Clinical and self-report measures of spasticity and its impact on quality of life will be collected, as well as quantitative ultrasound measures of muscle architecture and stiffness. The ultimate goal of this pilot project is to collect the data necessary to apply for a larger randomized-controlled trial. Conducting a larger trial will allow for a more powerful estimation of safety and efficacy of ESWT as a treatment for spasticity in people with SCI.
The purpose of this study is to assess the safety of autologous human Schwann cell (ahSC) transplantation in participants with chronic SCI. This trial design is phase I, open label, unblinded, non-randomized, and non-placebo controlled multiple injury cohorts.
The purpose of this research study is to evaluate the effectiveness of functional electrical stimulation (FES) provided by an implanted pulse generator (IPG) in correcting hip, knee and ankle function to improve walking in people with partial paralysis.
The purpose of this study is to determine if individuals with incomplete spinal cord injury (SCI) who remain unable to walk normally 1 year after their SCIs are able to sense and move the affected legs better after 10-13 weeks of treatment with a new robotic therapy device. The hypothesis is that using the AMES device on the legs of chronic subjects with incomplete SCI will result in improved strength, sensation in the legs, and improved functional gait in the treated limbs.
The purpose of this study is to determine if tetraplegic individuals with incomplete spinal cord injury (SCI) who remain unable to move their arms normally 1 year after their SCIs are able to sense and move the affected arm(s) better after 10-13 weeks of treatment with a new robotic therapy device. The hypothesis is that using the AMES device on the arm(s) of chronic tetraplegic subjects with incomplete SCI will result in improved strength, sensation, and functional movement in treated limb(s).
This proposal investigates the hypothesis that progressive aerobic exercise with Lokomat is feasible in people with motor incomplete spinal cord injury, and three months of training will improve cardiovascular fitness and gait functionality when compared to physical therapy controls
The DOSED clinical study evaluates the safety and utility of a novel delivery device to deliver LCTOPC1, a cell therapy, to the spinal cord of patients with a spinal cord injury (SCI). LCTOPC1 is designed to replace or support cells that are absent or dysfunctional due to traumatic injury, with a goal to help improve the quality of life and restore or augment functional activity in persons suffering from a traumatic cervical or thoracic injuries.
The purpose of this study is to evaluate the safety of cross sequential escalating doses of AST-OPC1 administered among 5 cohorts at a single time-point between 21 and 42 days post injury, inclusively, to subjects with subacute cervical spinal cord injuries (SCI).
This study is to determine if non-invasive electrical stimulation of the spinal cord can help improve hand and arm function in people with paralysis who suffered a cervical spinal cord injury.
Nerve Transfer surgery can provide improved hand function following cervical spinal cord injuries