686 Clinical Trials for Various Conditions
Background: About 90,000 new cases of brain and spinal cord tumors are diagnosed annually in the United States. Most of these tumors are benign; however, about 30% are malignant, and 35% of people with malignant tumors in the brain and spinal cord will die within 5 years. Many of these people have changes in certain genes (MYC or MYCN) that drive the development of their cancers. Objective: To test a study drug (PLX038) in people with tumors of the brain or spinal cord. Eligibility: People aged 18 years or older with a tumor of the brain or spinal cord. Some participants must also have tumors with changes in the MYC or MYCN genes. Design: Participants will be screened. They will have a physical exam and blood tests. They will have imaging scans and a test of their heart function. They may need to have a biopsy: A sample of tissue will be removed from their tumor. PLX038 is given through a tube attached to a needle inserted into a vein in the arm. All participants will receive PLX038 on the first day of each 21-day treatment cycle. They will take a second drug 3 days later to help reduce the risk of infection; for this drug, participants will be shown how to inject themselves under the skin at home. Blood tests, imaging scans, and other tests will be repeated during study visits. Hair samples will also be collected during these visits. Some participants may have an additional biopsy. Study treatment will continue up to 7 months. Follow-up visits will continue every few months for up to 5 years.
This is a Phase 1 study of central nervous system (CNS) locoregional adoptive therapy with SC-CAR4BRAIN, an autologous CD4+ and CD8+ T cells lentivirally transduced to express to express combinations of B7-H3, EGFR806, HER2, and IL13-zetakine chimeric antigen receptors (CAR). CAR T cells are delivered via an indwelling catheter into the ventricular system in children and young adults with diffuse intrinsic pontine glioma (DIPG), diffuse midline glioma (DMG), and recurrent or refractory CNS tumors. A child or young adult meeting all eligibility criteria, including having a CNS catheter placed into their ventricular system, and meeting none of the exclusion criteria will have their T cells collected. The T cells will then be bioengineered into a second-generation CAR T cell that target B7H3, EGFR806, HER2, and IL13-zetakine on tumor cells. Patients will be assigned to 1 of 2 treatment Arms based on the type of their tumor: * Arm A is for patients with DIPG (meaning primary disease localized to the pons, metastatic disease is allowed) anytime after standard radiation OR after progression. * Arm B is for patients with non-pontine DMG (meaning DMG in other parts of the brain such as the thalamus or spine) anytime after standard radiation OR after progression. This Arm also includes other recurrent/refractory CNS tumors.
This is an open-label, monotherapy study of pemigatinib in participants with recurrent glioblastoma (GBM) or other recurrent gliomas, circumscribed astrocytic gliomas, and glioneuronal and neuronal tumors with an activating FGFR1-3 mutation or fusion/rearrangement. This study consists of 2 cohorts, Cohorts A, and B, and will enroll approximately 82 participants into each cohort. Participants will receive pemigatinib 13.5 mg QD on a 2-week on-therapy and 1-week off-therapy schedule as long as they are receiving benefit and have not met any criteria for study withdrawal.
The purpose of this study is to examine the use of a single dose of tozuleristide (24 or 36 mg) and the Canvas imaging system during surgical resection of primary central nervous system (CNS) tumors: Primary gadolinium enhancing (high grade) CNS tumors, primary non-gadolinium enhancing CNS tumors, and primary vestibular schwannoma. The primary objectives of the study is to see how well tozuleristide and the Canvas imaging system during surgical resection will show fluorescence among primary enhancing/high grade CNS tumors; and among the tumors that demonstrate tozuleristide fluorescence, to estimate the true positive rate and true negative rate of fluorescence in tissue biopsies, as well as sensitivity and specificity of tozuleristide fluorescence for distinguishing tumor from non-tumoral tissue. The secondary objectives of the study include evaluating the safety of tozuleristide and the Canvas imaging system, and to determine if the presence of remaining fluorescence at the time of surgery corresponds to remaining tumor evident on post-operative MRI images, or if the absence of fluorescence corresponds to evidence of no gross residual tumor on post-operative magnetic resonance imaging (MRI).
The primary objective of this Phase 1, open-label, dose-escalation, and exploratory study is to evaluate the safety and tolerability profile (establish the maximum-tolerated dose) and evaluate the occurrence of dose-limiting toxicities (DLTs) following single weekly or multiple-day weekly dose regimens of single-agent, oral ONC206 in patients with recurrent, primary central nervous system (CNS) neoplasms.
This trial investigates how well 7T MRI scan works in imaging central nervous system tumors. Diagnostic procedures, such as 7T MRI, may help find and diagnose central nervous system tumors and help measure a patient's response to earlier treatment. The goal of this trial is to learn if a new MRI system can provide better quality images than a standard MRI.
The PIRATE study tests the experimental drug RRx-001 in combination with 2 chemotherapy drugs that are commonly used in patients with cancer. RRx-001 has been used alone and with other anti-cancer medicines in adults. However, the investigators do not know what effects it will have in children and young adults.
This early phase I trial studies the feasibility of giving memantine for the reduction of cognitive impairment after radiation therapy in pediatric patients with central nervous system tumors. Memantine may reduce the effects of radiation therapy on memory and thinking.
This is a Phase 1 study of central nervous system (CNS) locoregional adoptive therapy with autologous CD4+ and CD8+ T cells lentivirally transduced to express a B7H3-specific chimeric antigen receptor (CAR) and EGFRt. CAR T cells are delivered via an indwelling catheter into the tumor resection cavity or ventricular system in children and young adults with diffuse intrinsic pontine glioma (DIPG), diffuse midline glioma (DMG), and recurrent or refractory CNS tumors. A child or young adult meeting all eligibility criteria, including having a CNS catheter placed into the tumor resection cavity or into their ventricular system, and meeting none of the exclusion criteria, will have their T cells collected. The T cells will then be bioengineered into a second-generation CAR T cell that targets B7H3-expressing tumor cells. Patients will be assigned to one of 3 treatment arms based on location or type of their tumor. Patients with supratentorial tumors will be assigned to Arm A, and will receive their treatment into the tumor cavity. Patients with either infratentorial or metastatic/leptomeningeal tumors will be assigned to Arm B, and will have their treatment delivered into the ventricular system. The first 3 patients enrolled onto the study must be at least 15 years of age and assigned to Arm A or Arm B. Patients with DIPG will be assigned to Arm C and have their treatment delivered into the ventricular system. The patient's newly engineered T cells will be administered via the indwelling catheter for two courses. In the first course patients in Arms A and B will receive a weekly dose of CAR T cells for three weeks, followed by a week off, an examination period, and then another course of weekly doses for three weeks. Patients in Arm C will receive a dose of CAR T cells every other week for 3 weeks, followed by a week off, an examination period, and then dosing every other week for 3 weeks. Following the two courses, patients in all Arms will undergo a series of studies including MRI to evaluate the effect of the CAR T cells and may have the opportunity to continue receiving additional courses of CAR T cells if the patient has not had adverse effects and if more of their T cells are available. The hypothesis is that an adequate amount of B7H3-specific CAR T cells can be manufactured to complete two courses of treatment with 3 or 2 doses given on a weekly schedule followed by one week off in each course. The other hypothesis is that B7H3-specific CAR T cells can safely be administered through an indwelling CNS catheter or delivered directly into the brain via indwelling catheter to allow the T cells to directly interact with the tumor cells for each patient enrolled on the study. Secondary aims of the study will include evaluating CAR T cell distribution with the cerebrospinal fluid (CSF), the extent to which CAR T cells egress or traffic into the peripheral circulation or blood stream, and, if tissues samples from multiple timepoints are available, also evaluate disease response to B7-H3 CAR T cell locoregional therapy.
This clinical trial evaluates the use of microdialysis catheters during surgery to collect biomarkers, and studies the feasibility of intraoperative microdialysis during neurosurgery for central nervous system malignancies. A biomarker is a measurable indicator of the severity or presence of disease state. Information collected in this study may help doctors to develop new strategies to better diagnose, monitor, and treat brain tumors.
This early phase I trial studies how well hyperpolarized carbon C 13 pyruvate magnetic resonance imaging works in detecting lactate and bicarbonate in participants with central nervous system tumors. Hyperpolarized carbon C 13 pyruvate magnetic resonance imaging may be used to measure the metabolic state of malignant brain tumors.
This phase I trial studies the side effects and best dose of APX005M in treating younger patients with primary malignant central nervous system tumor that is growing, spreading, or getting worse (progressive), or newly diagnosed diffuse intrinsic pontine glioma. APX005M can trigger activation of B cells, monocytes, and dendritic cells and stimulate cytokine release from lymphocytes and monocytes. APX005M can mediate a direct cytotoxic effect on CD40+ tumor cells.
Phase 1 of this study, utilizing a rolling 6 design, will be conducted to determine a maximum tolerated dose (MTD) and recommended Phase 2 dose (RP2D), and to describe the toxicities of lenvatinib administered in combination with everolimus once daily to pediatric participants with recurrent/refractory solid tumors. Phase 2, utilizing Simon's optimal 2-stage design, will be conducted to estimate the antitumor activity of lenvatinib in combination with everolimus in pediatric participants with selected recurrent/refractory solid tumors including Ewing sarcoma, rhabdomyosarcoma, and high grade glioma (HGG) using objective response rate (ORR) at Week 16 as the outcome measure.
This study proposes to do a prospective observational cohort study evaluating the quality of life (QOL) of children with Central Nervous System (CNS) tumors and their families who choose to self-medicate with marijuana-derived products while undergoing treatment at Children's Hospital Colorado (CHCO).
This pilot will study the feasibility and exploratory efficacy of using Cabozantinib for recurrent or refractory central nervous system tumors for which there are no curative options. Patients will also be followed for safety, time to progression, event free survival and overall survival
This study is a single center, open-label, two-part study to assess image guided surgery of intramolecular imaging in nervous system tumors. Subjects with a diagnosis of a resectable nervous system tumor who are at risk of recurrence are included. The primary goal is to observe what tissues fluoresce in the OR, and then to identify if that tissue is cancerous/tumor or normal when the histopathology is performed.
Background: The number of people who get tumors of the brain or central nervous system (CNS) is lower than other cancers. But these tumors cause a higher rate of serious effects and even death. Researchers want to test existing samples of tissue from these tumors to learn more about them. This may lead to better treatment. Objective: To study stored samples of CNS tumors to learn more about the tumors and explore new ways to diagnose them. Eligibility: The study will use tissue samples already collected at NIH from people with brain or CNS tumors. Design: The participants will have given their consent in a previous study. Researchers will review the tissue samples and any data collected about them. Researchers will do lab tests and scans on the samples. All data will be kept secure.
This study will explore neurocognitive performance in pediatric brain tumor patients receiving proton beam radiation therapy (PBRT). The investigators goal is to gather baseline neurocognitive testing prior to the completion of the first week of radiation therapy along with follow-up testing 6-12 months after the completion of radiation and serial annual testing thereafter. With these data the investigators plan to evaluate the effects of PBRT on neurocognitive performance as it relates to patients' age at diagnosis, tumor location, and radiation dose. Modeling studies have demonstrated that PBRT could improve neurocognitive outcomes, but there is a paucity of prospectively-collected patient data. The investigators are uniquely positioned to address this important question given the busy pediatric central nervous system (CNS) tumor service, the delivery of proton therapy at the S. Lee Kling Proton Therapy Center at Barnes-Jewish Hospital, and the multi-disciplinary research team with extensive experience into the late effects of therapy as it relates to neurocognition.
Laser Interstitial Thermal Therapy (LITT) is a minimally invasive surgical technique that allows for biopsy and thermal ablation of brain tumors. Pediatric patients with brain tumors who are eligible and enroll in the trial will undergo LITT at the time of diagnosis or at the time of recurrence/progression rather than undergo an open craniotomy and tumor resection/biopsy. LITT will include a stereotactic biopsy followed by thermal ablation of the tumor. This study will monitor the safety and efficacy of LITT for the treatment of pediatric brain tumors.
This phase I trial studies the side effects and best dose of pomalidomide in treating younger patients with tumors of the brain or spine (central nervous system) that have come back or are continuing to grow. Pomalidomide may interfere with the ability of tumor cells to grow and spread and may also stimulate the immune system to kill tumor cells.
This phase I trial studies the side effects and best dose of palbociclib isethionate in treating younger patients with central nervous system tumors that have grown, come back, or not responded to treatment. Palbociclib isethionate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This phase I trial studies the side effects and best dose of azurin-derived cell-penetrating peptide p28 (p28) in treating patients with recurrent or progressive central nervous system tumors. Drugs used in chemotherapy, such as azurin-derived cell-penetrating peptide p28, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing.
This pilot clinical trial studies high-dose trivalent influenza vaccine in inducing immune response patients with central nervous system tumors. Studying samples of blood in the laboratory from patients receiving trivalent influenza vaccine may help doctors learn more about the effects of trivalent influenza vaccine on cells. It may also help doctors understand how well patients respond to treatment.
Primary Objectives: Phase 1 Part: To determine the dose limiting toxicity (DLT) and the maximum tolerated dose (MTD) of cabazitaxel as a single agent in pediatric participants with recurrent or refractory solid tumors including tumors of the central nervous system. Phase 2 Part: To determine the objective response rate (complete and partial response) and the duration of response to cabazitaxel as a single agent in participants with recurrent or refractory high grade glioma (HGG) or diffuse intrinsic pontine glioma (DIPG). Secondary Objectives: Phase 1 Part: To characterize the safety and tolerability of cabazitaxel in participants with recurrent or refractory solid tumors including tumors of the central nervous system. To characterize the pharmacokinetic (PK) profile of cabazitaxel in participants with recurrent or refractory solid tumors including tumors of the central nervous system. To evaluate preliminary anti-tumor activity that may be associated with cabazitaxel in participants with recurrent or refractory solid tumors including tumors of the central nervous system. Phase 2 Part: To characterize the safety and tolerability of cabazitaxel in participants with recurrent or refractory HGG or DIPG. To estimate progression free survival in participants with recurrent or refractory HGG or DIPG. To estimate overall survival in participants with recurrent or refractory HGG or DIPG. To characterize the plasma PK profile of cabazitaxel in participants with recurrent or refractory HGG or DIPG.
This phase I trial studies the side effects and best dose of trebananib in treating patients with solid tumors that has returned after a period of improvement or does not respond to treatment, including central nervous system tumors. Trebananib may stop the growth of tumor cells by blocking blood flow to the tumor.
This pilot clinical trial studies trivalent influenza vaccine in preventing flu in patients with central nervous system (CNS) tumors. Flu vaccine may help the body build an effective immune response and help prevent flu in patients who are receiving chemotherapy for CNS tumors
This study will analyze the effects of radiation given to children who have tumors of the central nervous system (CNS). Researchers want to learn more about changes in the quality of life that patients may experience as a result of radiation. Patients ages 21 and younger who have a primary CNS tumor and who have not received radiation previously may be eligible for this study. They will have a medical history and physical examination. Collection of blood (about 2-1/2 tablespoons) and urine will be done, as well as a pregnancy test. Patients will complete neuropsychological tests, which provide information about their changes in functioning over time. An expert in psychology will give a number of tests, and the patient's parents or guardian will be asked to complete a questionnaire about the patient's behavior. Also, patients will be given a quality of life questionnaire to complete and vision and hearing tests. The radiation itself is prescribed by patients' doctors and is not part of this study. Magnetic resonance imaging (MRI) will give researchers information about the tumor and brain, through several scanning sequences . MRI uses a strong magnetic field and radio waves to obtain images of body organs and tissues. Patients will lie on a table that slides into the enclosed tunnel of the scanner. They will need to lie still, and medication may be given to help them to do that. They may be in the scanner for up to 2 hours. As the scanner takes pictures, patients will hear knocking or beeping sounds, and they will wear earplugs to reduce the noise. A contrast agent will be administered, to allow images be seen more clearly. Blood and urine tests will be conducted after the first dose of radiation. MRI scans will be done 2 weeks after patients finish radiation therapy and again at 6 to 8 weeks, 6 months, 12 months, and yearly. Also at those follow-up periods, patients will undergo similar procedures as previously, including blood and urine tests and neuropsychological testing. Patients can remain in this study for 5 years. ...
This study is being done to learn about the safety of the study drug bevacizumab(AvastinĀ®), when used to treat radiation necrosis. The primary objective of this study is to test the feasibility of treating Central Nervous System (CNS) tumor patients suffering from radiation necrosis with bevacizumab every 2 weeks. The secondary objectives of this study are: * To evaluate improvement in neurologic symptoms associated with bevacizumab as assessed by clinical evaluation; * To investigate the neuro-imaging changes in radiation necrosis associated edema, including Mass Resonance (MR) spectroscopy; * To evaluate changes in corticosteroid use in patients with radiation necrosis following treatment with bevacizumab; * To evaluate changes in quality of life.
RATIONALE: PTC299 may stop the growth of tumor cells by blocking blood flow to the tumor. PURPOSE: This phase I trial is studying the side effects and the best dose of PTC299 in treating young patients with recurrent or refractory primary central nervous system tumors.
This phase I trial is studying the side effects and best dose of vorinostat when given together with bortezomib in treating young patients with refractory or recurrent solid tumors, including CNS tumors and lymphoma. Vorinostat and bortezomib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor.