Treatment Trials

4 Clinical Trials for Various Conditions

Focus your search

RECRUITING
Genetic Markers of Cardiovascular Disease in Epilepsy
Description

Epilepsy is a common condition which affects over 3 million people in the US. Patients with uncontrolled epilepsy have a lifetime risk of sudden unexpected death (SUDEP) of 35%, which is greatest in those under 40 years of age. The exact mechanisms and causes are not understood but can be due to underlying conditions which affect the heart and brain, which may lead to dangerous heart rhythms and death. Some of these conditions which affect heart and brain have an identifiable genetic cause. This study aims to identify known genetic causes of heart rhythm and sudden death related disorders in patients with epilepsy.

ENROLLING_BY_INVITATION
Derivation of Human Induced Pluripotent Stem (iPS) Cells to Heritable Cardiac Arrhythmias
Description

Human induced pluripotent stem cells (hiPSCs) have driven a paradigm shift in the modeling of human disease; the ability to reprogram patient-specific cells holds the promise of an enhanced understanding of disease mechanisms and phenotypic variability, with applications in personalized predictive pharmacology/toxicology, cell therapy and regenerative medicine. This research will collect blood or skin biopsies from patients and healthy controls for the purpose of generating cell and tissue models of Mendelian heritable forms of heart disease focusing on cardiomyopathies, channelopathies and neuromuscular diseases. Cardiomyocytes derived from hiPSCs will provide a ready source of disease specific cells to study pathogenesis and therapeutics.

COMPLETED
Characteristics of Andersen-Tawil Syndrome
Description

Andersen-Tawil Syndrome (ATS) is a rare, genetic disorder that causes episodes of muscle weakness, potentially life-threatening changes in heart rhythm, and developmental abnormalities. Disease symptoms can vary, the cause of some ATS cases remains unknown, and no specific treatment has been identified. The purpose of this multi-site study is to better characterize ATS, establish whether symptoms change over time, and determine if symptoms are related to a mutation in the KCNJ2 gene.

COMPLETED
Single Photon Emission Computed Tomography (SPECT) to Study Paroxysmal Hyperkinetic Movement Disorders
Description

This study will use single photon emission computed tomography (SPECT) to determine what areas of the brain are responsible for paroxysmal hyperkinetic movement disorders. Patients with these disorders have sudden, brief attacks of movement, similar to epileptic seizures, but without loss of consciousness. SPECT is a nuclear medicine test that produces three-dimensional images of the brain, showing blood flow and function in different brain regions. This test, which can detect the focus of epileptic seizures, will be used in this study to scan patients while they are experiencing a hyperkinetic movement attack, while they are not having and attack, and while they are simulating an attack. Patients 18 years of age and older who have paroxysmal movement attacks that can be easily induced by a specific trigger, such as a sudden movement or prolonged exercise, may be eligible for this study. Candidates will be screened with a medical history and review of their medical records, physical examination, videotape of attacks, and, for women, a pregnancy test. Participants will have three SPECT scans, separated from each other by at least 48 hours. Before each scan, the subject will perform an activity that ordinarily precipitates a movement attack, such as standing up from a chair, assuming a certain posture, or doing something strenuous. Each scan will try to record one of the following conditions: * The subject performs the trigger activity, but does not have an attack; * The subject performs the trigger activity and has an involuntary attack as a result; * The subject performs the trigger activity and does not have an attack, but then mimics an attack voluntarily. After the condition is recorded, the subject will be given an injection of a radioactive agent called 99m Technetium and will then relax quietly for 40 to 60 minutes before the SPECT scan. For the scan, the subject lies on an examination table and the SPECT camera is moved near and around the head to image the brain. The scan takes about 40 minutes. Participants will also undergo one magnetic resonance imaging (MRI) scan. For this test, the subject lies in a narrow cylinder (the scanner), while pictures of the brain are taken. Earplugs are worn to muffle loud noises caused by electrical switching of radio frequency circuits used in the scanning process. The procedure takes about 30 minutes.

Conditions