Treatment Trials

82 Clinical Trials for Various Conditions

Focus your search

TERMINATED
Intercontinental Multidisciplinary Registry and Treatment Optimization Study for Choroid Plexus Tumors
Description

This is a "tissue banking and data review" research study that also has a "clinical" research part: * The goal of the tissue banking part of this study is to store tissue in a research tissue bank by the International Society for Pediatric Oncology (SIOP) at an international reference center for choroid plexus tumors. The tissue will be used in future research related to cancer. * The goal of the data review part of this study is to collect information from the medical records of patients with choroid plexus tumors, and to store the information in SIOP databases for use in future research related to cancer. * The goal of this clinical research study is to compare 4 chemotherapy treatments for choroid plexus tumors. The safety and level of effectiveness of these study treatments will be compared and studied. The study drugs include different combinations of etoposide, carboplatin, vincristine, cyclophosphamide, methotrexate, doxorubicin, cisplatin, dactinomycin, temozolomide, and irinotecan.

TERMINATED
Palbociclib Isethionate in Treating Younger Patients With Recurrent, Progressive, or Refractory Central Nervous System Tumors
Description

This phase I trial studies the side effects and best dose of palbociclib isethionate in treating younger patients with central nervous system tumors that have grown, come back, or not responded to treatment. Palbociclib isethionate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

TERMINATED
Study of Fixed vs. Flexible Filgrastim to Accelerate Bone Marrow Recovery After Chemotherapy in Children With Cancer
Description

This randomized phase III trial studies flexible administration of filgrastim after combination chemotherapy to see how well it works compared to fixed administration of filgrastim in decreasing side effects of chemotherapy in younger patients with cancer. Cancer chemotherapy frequently results in neutropenia (low blood counts) when patients are susceptible to severe infections. A medicine called G-CSF (filgrastim) stimulates bone marrow and daily filgrastim shots are commonly used to shorten neutropenic periods and decrease infections after chemotherapy. Since filgrastim is customarily used on a fixed schedule starting early after chemotherapy and there are data that early doses may not be needed, this study tests new flexible schedule of filgrastim to optimize its use by reducing the number of painful shots, cost of treatment, and filgrastim side effects in children with cancer receiving chemotherapy.

TERMINATED
Treatment of Tumors of the Choroid Plexus Epithelium
Description

The goal of this clinical research study is to compare carboplatin to cyclophosphamide when given with etoposide, vincristine, and radiation therapy in the treatment of choroid plexus tumors. The safety of these 2 combination therapies will also be compared. Objectives: OVERALL AIM: To improve choroid plexus tumor treatment through better understanding of the tumor biology and through increased knowledge about the benefit of specific treatment elements. Specific Objectives: The study will have a prephase to evaluate the feasibility of the following randomized study (main phase). Pre-Phase (completed 2005) Primary Specific Objective: To determine the number of patients accountable per year for randomization in a worldwide study. Secondary Specific Objective: To measure the number of drop outs and to describe the toxicity of the chemotherapy. Main Phase (started in 2006) Primary Specific Objective: To compare the survival times after cyclophosphamide based treatment with the survival times after carboplatin based treatment in choroid plexus tumor patients. Main Phase Secondary Specific Objectives: 1. To compare the resectability of choroid plexus tumors after two blocks of cyclophosphamide based treatment with the resectability after two blocks of carboplatin based treatment. 2. To compare response rates of incompletely resected choroid plexus tumors to two blocks of cyclophosphamide based treatment with the response rates after two blocks of carboplatin based treatment. 3. To determine the prognostic relevance of histological atypia and SV40 in choroid plexus tumors.

RECRUITING
Phase I Study of Oral ONC206 in Recurrent and Rare Primary Central Nervous System Neoplasms
Description

The primary objective of this Phase 1, open-label, dose-escalation, and exploratory study is to evaluate the safety and tolerability profile (establish the maximum-tolerated dose) and evaluate the occurrence of dose-limiting toxicities (DLTs) following single weekly or multiple-day weekly dose regimens of single-agent, oral ONC206 in patients with recurrent, primary central nervous system (CNS) neoplasms.

ACTIVE_NOT_RECRUITING
Immune Checkpoint Inhibitor Nivolumab in People With Recurrent Select Rare CNS Cancers
Description

Background: More than 130 primary tumors of the central nervous system (CNS) have been identified. Most affect less than 1,000 people in the United States each year. Because these tumors are so rare, there are few proven therapies. This study will test whether the immunotherapy drug nivolumab is an effective treatment for people with rare CNS tumors. Objectives: To learn if stimulating the immune system using the drug nivolumab can shrink tumors in people with rare CNS (brain or spine) tumors or increase the time it takes for these tumors to grow or spread. Eligibility: Adults whose rare CNS tumor has returned. Design: Individuals will be screened: * Heart and blood tests * Physical and neurological exam * Hepatitis tests * Pregnancy test * MRI. They will lay in a machine that takes pictures. * Tumor tissue sample. This can be from a previous procedure. At the start of the study, participants will have blood tests. They will answer questions about their symptoms and their quality of life. Individuals will get nivolumab in a vein every 2 weeks for up to 64 weeks. Individuals will have monthly blood tests. Every other month they will have an MRI and a neurologic function test. They will also answer questions about their quality of life. Genetic tests will be done on individuals' tumor tissue. Individuals will be contacted if any clinically important results are found. After treatment ends, individuals will be monitored for up to 5 years. They will have a series of MRIs and neurological function tests. They will be asked to report any symptoms they experience....

TERMINATED
Gadobutrol Versus Gadopentetate Dimeglumine or Gadobenate Dimeglumine Before DCE-MRI in Diagnosing Patients With Multiple Sclerosis, Grade II-IV Glioma, or Brain Metastases
Description

This pilot clinical trial compares gadobutrol with standard of care contrast agents, gadopentetate dimeglumine or gadobenate dimeglumine, before dynamic contrast-enhanced (DCE)-magnetic resonance imaging (MRI) in diagnosing patients with multiple sclerosis, grade II-IV glioma, or tumors that have spread to the brain. Gadobutrol is a type of contrast agent that may increase DCE-MRI sensitivity for the detection of tumors or other diseases of the central nervous system. It is not yet known whether gadobutrol is more effective than standard of care contrast agents before DCE-MRI in diagnosing patients with multiple sclerosis, grade II-IV glioma, or tumors that have spread to the brain.

WITHDRAWN
Efficacy of 68Ga-DOTATOC Positron Emission Tomography (PET) CT in Children and Young Adults With Brain Tumors
Description

This pilot clinical trial studies gallium Ga 68-edotreotide (68Ga-DOTATOC) positron emission tomography (PET)/computed tomography (CT) in finding brain tumors in younger patients. Diagnostic procedures, such as gallium Ga 68-edotreotide PET/CT imaging, may help find and diagnose brain tumors.

Conditions
Acoustic SchwannomaAdult Anaplastic AstrocytomaAdult Anaplastic EpendymomaAdult Anaplastic MeningiomaAdult Anaplastic OligodendrogliomaAdult Brain Stem GliomaAdult Choroid Plexus TumorAdult CraniopharyngiomaAdult Diffuse AstrocytomaAdult EpendymoblastomaAdult EpendymomaAdult Giant Cell GlioblastomaAdult GlioblastomaAdult GliosarcomaAdult Grade I MeningiomaAdult Grade II MeningiomaAdult MedulloblastomaAdult Meningeal HemangiopericytomaAdult Mixed GliomaAdult Myxopapillary EpendymomaAdult OligodendrogliomaAdult Papillary MeningiomaAdult Pilocytic AstrocytomaAdult Pineal Gland AstrocytomaAdult PineoblastomaAdult PineocytomaAdult Subependymal Giant Cell AstrocytomaAdult SubependymomaAdult Supratentorial Primitive Neuroectodermal Tumor (PNET)Childhood Choroid Plexus TumorChildhood CraniopharyngiomaChildhood EpendymoblastomaChildhood Grade I MeningiomaChildhood Grade II MeningiomaChildhood Grade III MeningiomaChildhood High-grade Cerebellar AstrocytomaChildhood High-grade Cerebral AstrocytomaChildhood Infratentorial EpendymomaChildhood Low-grade Cerebellar AstrocytomaChildhood Low-grade Cerebral AstrocytomaChildhood MedulloepitheliomaChildhood Supratentorial EpendymomaMeningeal MelanocytomaNewly Diagnosed Childhood EpendymomaRecurrent Adult Brain TumorRecurrent Childhood Anaplastic AstrocytomaRecurrent Childhood Anaplastic OligoastrocytomaRecurrent Childhood Anaplastic OligodendrogliomaRecurrent Childhood Brain Stem GliomaRecurrent Childhood Cerebellar AstrocytomaRecurrent Childhood Cerebral AstrocytomaRecurrent Childhood Diffuse AstrocytomaRecurrent Childhood EpendymomaRecurrent Childhood Fibrillary AstrocytomaRecurrent Childhood Gemistocytic AstrocytomaRecurrent Childhood Giant Cell GlioblastomaRecurrent Childhood GlioblastomaRecurrent Childhood Gliomatosis CerebriRecurrent Childhood GliosarcomaRecurrent Childhood MedulloblastomaRecurrent Childhood OligoastrocytomaRecurrent Childhood OligodendrogliomaRecurrent Childhood Pilocytic AstrocytomaRecurrent Childhood Pilomyxoid AstrocytomaRecurrent Childhood PineoblastomaRecurrent Childhood Pleomorphic XanthoastrocytomaRecurrent Childhood Protoplasmic AstrocytomaRecurrent Childhood Subependymal Giant Cell AstrocytomaRecurrent Childhood Supratentorial Primitive Neuroectodermal TumorRecurrent Childhood Visual Pathway and Hypothalamic GliomaRecurrent Childhood Visual Pathway GliomaUntreated Childhood Anaplastic AstrocytomaUntreated Childhood Anaplastic OligodendrogliomaUntreated Childhood Brain Stem GliomaUntreated Childhood Cerebellar AstrocytomaUntreated Childhood Cerebral AstrocytomaUntreated Childhood Diffuse AstrocytomaUntreated Childhood Fibrillary AstrocytomaUntreated Childhood Gemistocytic AstrocytomaUntreated Childhood Giant Cell GlioblastomaUntreated Childhood GlioblastomaUntreated Childhood Gliomatosis CerebriUntreated Childhood GliosarcomaUntreated Childhood MedulloblastomaUntreated Childhood OligoastrocytomaUntreated Childhood OligodendrogliomaUntreated Childhood Pilocytic AstrocytomaUntreated Childhood Pilomyxoid AstrocytomaUntreated Childhood PineoblastomaUntreated Childhood Pleomorphic XanthoastrocytomaUntreated Childhood Protoplasmic AstrocytomaUntreated Childhood Subependymal Giant Cell AstrocytomaUntreated Childhood Supratentorial Primitive Neuroectodermal TumorUntreated Childhood Visual Pathway and Hypothalamic GliomaUntreated Childhood Visual Pathway Glioma
COMPLETED
Molecular-Guided Therapy for Childhood Cancer
Description

The purpose of this study is to test the feasibility (ability to be done) of experimental technologies to determine a tumor's molecular makeup. This technology includes a genomic report based on DNA exomes and RNA sequencing that will be used to discover new ways to understand cancers and potentially predict the best treatments for patients with cancer in the future.

COMPLETED
p28 in Treating Younger Patients With Recurrent or Progressive Central Nervous System Tumors
Description

This phase I trial studies the side effects and best dose of azurin-derived cell-penetrating peptide p28 (p28) in treating patients with recurrent or progressive central nervous system tumors. Drugs used in chemotherapy, such as azurin-derived cell-penetrating peptide p28, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing.

COMPLETED
RO4929097, Temozolomide, and Radiation Therapy in Treating Patients With Newly Diagnosed Malignant Glioma
Description

This phase I trial studies the side effects and best dose of gamma-secretase/Notch signalling pathway inhibitor RO4929097 (RO4929097) when given together with temozolomide and radiation therapy in treating patients with newly diagnosed malignant glioma. Enzyme inhibitors, such as gamma-secretase/Notch signalling pathway inhibitor RO4929097, may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high-energy x-rays to kill tumor cells. Giving gamma-secretase/Notch signalling pathway inhibitor RO4929097 together with temozolomide and radiation therapy may kill more tumor cells.

TERMINATED
Gamma-Secretase Inhibitor RO4929097 in Treating Young Patients With Relapsed or Refractory Solid Tumors, CNS Tumors, Lymphoma, or T-Cell Leukemia
Description

This phase I/II clinical trial is studying the side effects and best dose of gamma-secretase inhibitor RO4929097 and to see how well it works in treating young patients with relapsed or refractory solid tumors, CNS tumors, lymphoma, or T-cell leukemia. Gamma-secretase inhibitor RO4929097 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

Conditions
Childhood Atypical Teratoid/Rhabdoid TumorChildhood Central Nervous System ChoriocarcinomaChildhood Central Nervous System GerminomaChildhood Central Nervous System Mixed Germ Cell TumorChildhood Central Nervous System TeratomaChildhood Central Nervous System Yolk Sac TumorChildhood Choroid Plexus TumorChildhood CraniopharyngiomaChildhood EpendymoblastomaChildhood Grade I MeningiomaChildhood Grade II MeningiomaChildhood Grade III MeningiomaChildhood Infratentorial EpendymomaChildhood MedulloepitheliomaChildhood Mixed GliomaChildhood OligodendrogliomaChildhood Supratentorial EpendymomaGonadotroph AdenomaPituitary Basophilic AdenomaPituitary Chromophobe AdenomaPituitary Eosinophilic AdenomaProlactin Secreting AdenomaRecurrent Childhood Acute Lymphoblastic LeukemiaRecurrent Childhood Anaplastic Large Cell LymphomaRecurrent Childhood Brain Stem GliomaRecurrent Childhood Central Nervous System Embryonal TumorRecurrent Childhood Cerebellar AstrocytomaRecurrent Childhood Cerebral AstrocytomaRecurrent Childhood EpendymomaRecurrent Childhood Grade III Lymphomatoid GranulomatosisRecurrent Childhood Large Cell LymphomaRecurrent Childhood Lymphoblastic LymphomaRecurrent Childhood MedulloblastomaRecurrent Childhood PineoblastomaRecurrent Childhood Small Noncleaved Cell LymphomaRecurrent Childhood Spinal Cord NeoplasmRecurrent Childhood Subependymal Giant Cell AstrocytomaRecurrent Childhood Supratentorial Primitive Neuroectodermal TumorRecurrent Childhood Visual Pathway and Hypothalamic GliomaRecurrent Childhood Visual Pathway GliomaRecurrent Pituitary TumorRecurrent/Refractory Childhood Hodgkin LymphomaT-cell Childhood Acute Lymphoblastic LeukemiaT-cell Large Granular Lymphocyte LeukemiaTSH Secreting AdenomaUnspecified Childhood Solid Tumor, Protocol Specific
COMPLETED
Vorinostat and Temozolomide in Treating Young Patients With Relapsed or Refractory Primary Brain Tumors or Spinal Cord Tumors
Description

This phase I trial is studying the side effects and best dose of vorinostat when given together with temozolomide in treating young patients with relapsed or refractory primary brain tumors or spinal cord tumors. Vorinostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Vorinostat may help temozolomide work better by making tumor cells more sensitive to the drug.

COMPLETED
Vorinostat and Bortezomib in Treating Young Patients With Refractory or Recurrent Solid Tumors, Including Central Nervous System Tumors and Lymphoma
Description

This phase I trial is studying the side effects and best dose of vorinostat when given together with bortezomib in treating young patients with refractory or recurrent solid tumors, including CNS tumors and lymphoma. Vorinostat and bortezomib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor.

COMPLETED
ABT-888 and Temozolomide in Treating Young Patients With Recurrent or Refractory CNS Tumors
Description

This phase I trial is studying the side effects and best dose of ABT-888 when given in combination with temozolomide in treating young patients with recurrent or refractory CNS tumors. ABT-888 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving ABT-888 together with temozolomide may kill more tumor cells.

COMPLETED
Bevacizumab in Reducing CNS Side Effects in Patients Who Have Undergone Radiation Therapy to the Brain for Primary Brain Tumor, Meningioma, or Head and Neck Cancer
Description

Bevacizumab may reduce CNS side effects caused by radiation therapy. This randomized phase II trial is studying how well bevacizumab works in reducing CNS side effects in patients who have undergone radiation therapy to the brain for primary brain tumor, meningioma, or head and neck cancer.

Conditions
Adult Anaplastic AstrocytomaAdult Anaplastic EpendymomaAdult Anaplastic MeningiomaAdult Anaplastic OligodendrogliomaAdult Brain Stem GliomaAdult Central Nervous System Germ Cell TumorAdult Choroid Plexus TumorAdult Diffuse AstrocytomaAdult EpendymomaAdult Grade II MeningiomaAdult Grade III MeningiomaAdult Malignant HemangiopericytomaAdult Mixed GliomaAdult OligodendrogliomaAdult Papillary MeningiomaAdult PineocytomaMalignant NeoplasmMeningeal MelanocytomaRadiation ToxicityRecurrent Adenoid Cystic Carcinoma of the Oral CavityRecurrent Adult Brain TumorRecurrent Basal Cell Carcinoma of the LipRecurrent Esthesioneuroblastoma of the Paranasal Sinus and Nasal CavityRecurrent Inverted Papilloma of the Paranasal Sinus and Nasal CavityRecurrent Lymphoepithelioma of the NasopharynxRecurrent Lymphoepithelioma of the OropharynxRecurrent Midline Lethal Granuloma of the Paranasal Sinus and Nasal CavityRecurrent Mucoepidermoid Carcinoma of the Oral CavityRecurrent Salivary Gland CancerRecurrent Squamous Cell Carcinoma of the HypopharynxRecurrent Squamous Cell Carcinoma of the LarynxRecurrent Squamous Cell Carcinoma of the Lip and Oral CavityRecurrent Squamous Cell Carcinoma of the NasopharynxRecurrent Squamous Cell Carcinoma of the OropharynxRecurrent Squamous Cell Carcinoma of the Paranasal Sinus and Nasal CavityRecurrent Verrucous Carcinoma of the LarynxRecurrent Verrucous Carcinoma of the Oral CavityStage I Adenoid Cystic Carcinoma of the Oral CavityStage I Basal Cell Carcinoma of the LipStage I Esthesioneuroblastoma of the Paranasal Sinus and Nasal CavityStage I Inverted Papilloma of the Paranasal Sinus and Nasal CavityStage I Lymphoepithelioma of the NasopharynxStage I Lymphoepithelioma of the OropharynxStage I Midline Lethal Granuloma of the Paranasal Sinus and Nasal CavityStage I Mucoepidermoid Carcinoma of the Oral CavityStage I Salivary Gland CancerStage I Squamous Cell Carcinoma of the HypopharynxStage I Squamous Cell Carcinoma of the LarynxStage I Squamous Cell Carcinoma of the Lip and Oral CavityStage I Squamous Cell Carcinoma of the NasopharynxStage I Squamous Cell Carcinoma of the OropharynxStage I Squamous Cell Carcinoma of the Paranasal Sinus and Nasal CavityStage I Verrucous Carcinoma of the LarynxStage I Verrucous Carcinoma of the Oral CavityStage III Adenoid Cystic Carcinoma of the Oral CavityStage III Basal Cell Carcinoma of the LipStage III Esthesioneuroblastoma of the Paranasal Sinus and Nasal CavityStage III Inverted Papilloma of the Paranasal Sinus and Nasal CavityStage III Lymphoepithelioma of the NasopharynxStage III Midline Lethal Granuloma of the Paranasal Sinus and Nasal CavityStage III Mucoepidermoid Carcinoma of the Oral CavityStage III Salivary Gland CancerStage III Squamous Cell Carcinoma of the HypopharynxStage III Squamous Cell Carcinoma of the LarynxStage III Squamous Cell Carcinoma of the Lip and Oral CavityStage III Squamous Cell Carcinoma of the NasopharynxStage III Squamous Cell Carcinoma of the OropharynxStage III Squamous Cell Carcinoma of the Paranasal Sinus and Nasal CavityStage III Verrucous Carcinoma of the LarynxStage III Verrucous Carcinoma of the Oral CavityStage IV Adenoid Cystic Carcinoma of the Oral CavityStage IV Basal Cell Carcinoma of the LipStage IV Esthesioneuroblastoma of the Paranasal Sinus and Nasal CavityStage IV Inverted Papilloma of the Paranasal Sinus and Nasal CavityStage IV Lymphoepithelioma of the NasopharynxStage IV Lymphoepithelioma of the OropharynxStage IV Midline Lethal Granuloma of the Paranasal Sinus and Nasal CavityStage IV Mucoepidermoid Carcinoma of the Oral CavityStage IV Salivary Gland CancerStage IV Squamous Cell Carcinoma of the HypopharynxStage IV Squamous Cell Carcinoma of the LarynxStage IV Squamous Cell Carcinoma of the Lip and Oral CavityStage IV Squamous Cell Carcinoma of the NasopharynxStage IV Squamous Cell Carcinoma of the OropharynxStage IV Squamous Cell Carcinoma of the Paranasal Sinus and Nasal CavityStage IV Verrucous Carcinoma of the LarynxStage IV Verrucous Carcinoma of the Oral Cavity
TERMINATED
Positron Emission Tomography Using Fluorine F 18 EF5 to Find Oxygen in Tumor Cells of Patients Who Are Undergoing Surgery or Biopsy for Newly Diagnosed Brain Tumors
Description

This phase I trial is studying the side effects of fluorine F18 EF5 when given during positron emission tomography to find oxygen in tumor cells of patients who are undergoing surgery or biopsy for newly diagnosed brain tumors. Diagnostic procedures using fluorine F 18 EF5 and positron emission tomography to detect tumor hypoxia may help in planning cancer treatment

SUSPENDED
Rare CNS Tumors Outcomes &Risk
Description

Background: Primary tumors of the brain and spine are those that start in the brain or spine. These tumors are rare, accounting for \<2% of all cancers diagnosed in the United States. Some of these tumors occur in less than 2,000 people per year. Researchers want to study a large group of people with this kind of tumor. They want to learn more about the tumors, including the risk factors related to how they develop in adults. Objective: To collect health and gene data to learn about what changes are associated with a rare CNS Tumors, to eventually screen for these changes or target the genes in treatment. Eligibility: Adult participants \>= 18 years of age who self- identify as being diagnosed with one of 12 rare CNS tumors, including: Atypical teratoid rhabdoid tumor (ATRT); Brainstem and midline gliomas; Choroid plexus tumors; Ependymoma; High grade meningioma; Gliomatosis cerebri; Medulloblastoma; Oligodendroglioma / Anaplastic oligodendroglioma; Pineal region tumors; Pleomorphic xanthroastrocytoma / Anaplastic pleomorphic xanthroastrocytoma; PNET (Supratentorial embryonal tumor); Primary CNS sarcoma / Secondary CNS sarcoma (Gliosarcoma). Design: Participants will be invited to participate through an ad on the CERN Foundation website (ependymoma), information on the Neuro-Oncology Branch website and other identified advocacy and social media sites and direct mailer to those who have already participated in the EO projects. (Registered Trademark) * Interested participants will complete an enrollment form that will be sent to the study coordinator. * The coordinator will then send the participant a consent form and schedule a time for phone consent. * Participants will complete the Rare CNS tumors Outcomes Survey and once completed, the Rare CNS tumors Risk survey. (Registered Trademark) * The questions on the Outcomes Survey will include treatment history, symptoms social and clinical information and it should take about 25-35 minutes. The Risk survey will cover their demographic information, personal medical history, family medical history and environmental exposures. This should take about 52 minutes. * Participants who have physical problems can have help with the surveys and forms. * Once the surveys are completed, participants will be mailed a kit to collect saliva for germline DNA. Participants will ship the sample to the study team in a prepaid envelope * If the sample is not sufficient, participants will be contacted to give provide an additional sample....

COMPLETED
Acupressure in Controlling Nausea in Young Patients Receiving Highly Emetogenic Chemotherapy
Description

RATIONALE: Acupressure wristbands may prevent or reduce nausea and caused by chemotherapy. It is not yet known whether standard care is more effective with or without acupressure wristbands in controlling acute and delayed nausea. PURPOSE: This randomized phase III trial is studying how well acupressure wristbands work with or without standard care in controlling nausea in young patients receiving highly emetogenic chemotherapy.

COMPLETED
Metabolic Syndrome in Childhood Cancer Survivors
Description

RATIONALE: Gathering information about how often metabolic syndrome occurs in young survivors of childhood cancer may help doctors learn more about the disease. PURPOSE: This clinical trial is studying metabolic syndrome in survivors of childhood cancer and in their healthy sisters and brothers.

WITHDRAWN
Studying Cerebrospinal Fluid Proteins and Angiogenesis Proteins in Young Patients With Newly Diagnosed Central Nervous System Tumors
Description

RATIONALE: Studying samples of cerebrospinal fluid from patients with cancer in the laboratory may help doctors identify biomarkers related to cancer. PURPOSE: This laboratory study is studying cerebrospinal fluid proteins and angiogenesis proteins in young patients with newly diagnosed central nervous system tumors.

RECRUITING
Study of Stored Tumor Samples in Young Patients With Brain Tumors
Description

This laboratory study is looking at stored tumor samples in young patients with brain tumors. Studying samples of tumor tissue from patients with cancer in the laboratory may help doctors learn more about changes that occur in DNA and identify biomarkers related to cancer.