Treatment Trials

91 Clinical Trials for Various Conditions

Focus your search

RECRUITING
Testing the Addition of an Anti-Cancer Drug, AZD1390, During Radiation Therapy for Newly Diagnosed High Grade Glioma, Diffuse Midline Glioma, or Diffuse Intrinsic Pontine Glioma
Description

This phase I clinical trial studies the side effects and best dose of AZD1390 and to see how well it works when given together with radiation therapy for the treatment of pediatric patients with high grade glioma, diffuse midline glioma or diffuse intrinsic pontine glioma. AZD1390 is in a class of medications called kinase inhibitors. It works by blocking the signals that cause cancer cells to multiply. This helps to stop the spread of cancer cells. Radiation therapy uses high energy x-rays, particles, or radioactive seeds to kill cancer cells and shrink tumors. Giving AZD1390 with radiation may be safe, tolerable, and/or effective in treating pediatric patients with high grade glioma, diffuse midline glioma or diffuse intrinsic pontine glioma.

NOT_YET_RECRUITING
ACT001 for the Treatment of Diffuse Intrinsic Pontine Gliomas and H3K27-altered High Grade Gliomas
Description

This is a Phase II open-label study to investigate the safety and efficacy of ACT001 in patients with DIPG and H3K27-altered HGG.

RECRUITING
Study of B7-H3, EGFR806, HER2, And IL13-Zetakine (Quad) CAR T Cell Locoregional Immunotherapy For Pediatric Diffuse Intrinsic Pontine Glioma, Diffuse Midline Glioma, And Recurrent Or Refractory Central Nervous System Tumors
Description

This is a Phase 1 study of central nervous system (CNS) locoregional adoptive therapy with SC-CAR4BRAIN, an autologous CD4+ and CD8+ T cells lentivirally transduced to express to express combinations of B7-H3, EGFR806, HER2, and IL13-zetakine chimeric antigen receptors (CAR). CAR T cells are delivered via an indwelling catheter into the ventricular system in children and young adults with diffuse intrinsic pontine glioma (DIPG), diffuse midline glioma (DMG), and recurrent or refractory CNS tumors. A child or young adult meeting all eligibility criteria, including having a CNS catheter placed into their ventricular system, and meeting none of the exclusion criteria will have their T cells collected. The T cells will then be bioengineered into a second-generation CAR T cell that target B7H3, EGFR806, HER2, and IL13-zetakine on tumor cells. Patients will be assigned to 1 of 2 treatment Arms based on the type of their tumor: * Arm A is for patients with DIPG (meaning primary disease localized to the pons, metastatic disease is allowed) anytime after standard radiation OR after progression. * Arm B is for patients with non-pontine DMG (meaning DMG in other parts of the brain such as the thalamus or spine) anytime after standard radiation OR after progression. This Arm also includes other recurrent/refractory CNS tumors.

NO_LONGER_AVAILABLE
Expanded Access Use of ONC201 in a Patient With Diffuse Intrinsic Pontine Gliomas
Description

This is an intermediate-size expanded access protocol to provide ONC201 to patients with diffuse intrinsic pontine gliomas who cannot access ONC201 through clinical trials.

Conditions
RECRUITING
A Pilot Study of SurVaxM in Children Progressive or Relapsed Medulloblastoma, High Grade Glioma, Ependymoma and Newly Diagnosed Diffuse Intrinsic Pontine Glioma
Description

Patients will receive a vaccine called SurVaxM on this study. While vaccines are usually thought of as ways to prevent diseases, vaccines can also be used to treat cancer. SurVaxM is designed to tell the body's immune system to look for tumor cells that express a protein called survivin and destroy them. The survivin protein can be found on up to 95% of glioblastomas and other types of cancer but is not found in normal cells. If the body's immune system knows to destroy cells that express survivin, it may help to control tumor growth and recurrence. SurVaxM will be mixed with Montanide ISA 51 before it is given. Montanide ISA 51 is an ingredient that helps create a stronger immune response in people, which helps the vaccine work better. This study has two phases: Priming and Maintenance. During the Priming Phase, patients will get one dose of SurVaxM combined with Montanide ISA 51 through a subcutaneous injection (a shot under the skin) at the start of the study and every 2 weeks for 6 weeks (for a total of 4 doses). At the same time that patients get the SurVaxM/Montanide ISA 51 injection, they will also get a second subcutaneous injection of a medicine called sargramostim. Sargramostim is given close to the SurVaxM//Montanide ISA 51 injection and works to stimulate the immune system to help the SurVaxM/Montanide ISA 51 work more effectively. If a patient completes the Priming Phase without severe side effects and his or her disease stays the same or improves, he or she can continue to the Maintenance Phase. During the Maintenance Phase, the patient will get a SurVaxM/Montanide ISA 51 dose along with a sargramostim dose about every 8 weeks for up to two years. After a patient finishes the study treatment, the doctor and study team will continue to follow his/her condition and watch for side effects up to 3 years following the last dose of SurVaxM/Montanide ISA 51. Patients will be seen in clinic every 3 months during the follow-up period.

ACTIVE_NOT_RECRUITING
A Study of BXQ-350 in Children With Newly Diagnosed Diffuse Intrinsic Pontine Glioma (DIPG) or Diffuse Midline Glioma (DMG)
Description

This study will evaluate the safety of BXQ-350 and determine the maximum tolerated dose (MTD) in children with newly diagnosed DIPG or DMG. All patients will receive BXQ-350 by intravenous (IV) infusion and radiation therapy. The study is divided into two parts: Part 1 will enroll patients at increasing dose levels of BXQ-350 in order to determine the MTD. Part 2 will enroll patients requiring a biopsy in order to assess BXQ-350 concentrations in the biopsied tumor.

RECRUITING
GD2 CAR T Cells in Diffuse Intrinsic Pontine Gliomas(DIPG) & Spinal Diffuse Midline Glioma(DMG)
Description

The primary purpose of this study is to test whether GD2-CAR T cells can be successfully made from immune cells collected from children and young adults with H3K27M-mutant diffuse intrinsic pontine glioma (DIPG) or spinal H3K27M-mutant diffuse midline glioma (DMG). H3K27Mmutant testing will occur as part of standard of care prior to enrollment.

RECRUITING
Study of B7-H3-Specific CAR T Cell Locoregional Immunotherapy for Diffuse Intrinsic Pontine Glioma/Diffuse Midline Glioma and Recurrent or Refractory Pediatric Central Nervous System Tumors
Description

This is a Phase 1 study of central nervous system (CNS) locoregional adoptive therapy with autologous CD4+ and CD8+ T cells lentivirally transduced to express a B7H3-specific chimeric antigen receptor (CAR) and EGFRt. CAR T cells are delivered via an indwelling catheter into the tumor resection cavity or ventricular system in children and young adults with diffuse intrinsic pontine glioma (DIPG), diffuse midline glioma (DMG), and recurrent or refractory CNS tumors. A child or young adult meeting all eligibility criteria, including having a CNS catheter placed into the tumor resection cavity or into their ventricular system, and meeting none of the exclusion criteria, will have their T cells collected. The T cells will then be bioengineered into a second-generation CAR T cell that targets B7H3-expressing tumor cells. Patients will be assigned to one of 3 treatment arms based on location or type of their tumor. Patients with supratentorial tumors will be assigned to Arm A, and will receive their treatment into the tumor cavity. Patients with either infratentorial or metastatic/leptomeningeal tumors will be assigned to Arm B, and will have their treatment delivered into the ventricular system. The first 3 patients enrolled onto the study must be at least 15 years of age and assigned to Arm A or Arm B. Patients with DIPG will be assigned to Arm C and have their treatment delivered into the ventricular system. The patient's newly engineered T cells will be administered via the indwelling catheter for two courses. In the first course patients in Arms A and B will receive a weekly dose of CAR T cells for three weeks, followed by a week off, an examination period, and then another course of weekly doses for three weeks. Patients in Arm C will receive a dose of CAR T cells every other week for 3 weeks, followed by a week off, an examination period, and then dosing every other week for 3 weeks. Following the two courses, patients in all Arms will undergo a series of studies including MRI to evaluate the effect of the CAR T cells and may have the opportunity to continue receiving additional courses of CAR T cells if the patient has not had adverse effects and if more of their T cells are available. The hypothesis is that an adequate amount of B7H3-specific CAR T cells can be manufactured to complete two courses of treatment with 3 or 2 doses given on a weekly schedule followed by one week off in each course. The other hypothesis is that B7H3-specific CAR T cells can safely be administered through an indwelling CNS catheter or delivered directly into the brain via indwelling catheter to allow the T cells to directly interact with the tumor cells for each patient enrolled on the study. Secondary aims of the study will include evaluating CAR T cell distribution with the cerebrospinal fluid (CSF), the extent to which CAR T cells egress or traffic into the peripheral circulation or blood stream, and, if tissues samples from multiple timepoints are available, also evaluate disease response to B7-H3 CAR T cell locoregional therapy.

COMPLETED
Study of GDC-0084 in Pediatric Patients With Newly Diagnosed Diffuse Intrinsic Pontine Glioma or Diffuse Midline Gliomas
Description

Pediatric high-grade gliomas are highly aggressive and treatment options are limited. The purpose of this first-in-pediatrics study is to examine the safety, tolerability, and pharmacokinetics of GDC-0084 and to estimate its maximum tolerated dose (MTD) when administered to pediatric patients with diffuse intrinsic pontine glioma (DIPG) or other diffuse midline H3 K27M-mutant gliomas after they have received radiation therapy (RT). GDC-0084 is a brain-penetrant inhibitor of a growth-promoting cell signaling pathway that is dysregulated in the majority of diffuse midline glioma tumor cells. This study is also designed to enable a preliminary assessment of the antitumor activity of single-agent GDC-0084, in the hope of enabling rational combination therapy with systemic therapy and/or radiation therapy (RT) in this patient population, which is in desperate need of therapeutic advances. Primary Objectives 1. To estimate the maximum tolerated dose (MTD) and/or the recommended phase 2 dosage (RP2D) of GDC-0084 in pediatric patients with newly diagnosed diffuse midline glioma, including diffuse intrinsic pontine glioma (DIPG) 2. To define and describe the toxicities associated with administering GDC-0084 after radiation therapy (RT) in a pediatric population 3. To characterize the pharmacokinetics of GDC-0084 in a pediatric population Secondary Objectives 1. To estimate the rate and duration of radiographic response in patients with newly diagnosed DIPG or other diffuse midline glioma treated with RT followed by GDC-0084 2. To estimate the progression-free survival (PFS) and overall survival (OS) distributions for patients with newly diagnosed DIPG or other diffuse midline glioma treated with RT followed by GDC-0084

ACTIVE_NOT_RECRUITING
A Phase 1b Study of PTC596 in Children With Newly Diagnosed Diffuse Intrinsic Pontine Glioma and High Grade Glioma
Description

The goal of this study is to evaluate the safety of the study drug PTC596 (Unesbulin) taken in combination with radiotherapy (RT) when given to pediatric patients newly diagnosed with High-Grade Glioma (HGG) including diffuse intrinsic pontine glioma (DIPG). The main aims of the study are to: * Find the safe dose of the study drug PTC596that can be given without causing serious side effects. * Find out the amount of drug that enters blood (in all patients) and tumor (in patients who receive drug prior to a planned surgery for removal of their brain tumor) During the first cycle (6-7weeks), patients will receive drug orally twice a week in combination with daily RT. During subsequent cycles (4 weeks each), they will receive only the study drug orally twice a week. Funding Source - FDA OOPD

COMPLETED
MTX110 by Convection-Enhanced Delivery in Treating Participants With Newly-Diagnosed Diffuse Intrinsic Pontine Glioma
Description

This phase I/II trial studies the side effects of panobinostat nanoparticle formulation MTX110 (MTX110) in treating participants with newly-diagnosed diffuse intrinsic pontine glioma. Panobinostat nanoparticle formulation MTX110 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

RECRUITING
International Diffuse Intrinsic Pontine Glioma (DIPG)/Diffuse Midline Glioma (DMG) Registry and Repository
Description

Doctors and other medical scientists want learn about the biology of DIPG/DMG and to develop better ways to diagnose and treat patients with DIPG/DMG. To do this, they need more information about the characteristics of DIPG/DMG tumors. Therefore, they want to establish a central location for clinical information and tumor tissue collected from DIPG/DMG patients. The purposes of this study are: * To enroll patients diagnosed with DIPG/DMG in the International DIPG/DMG Registry and Repository. * To provide a central location for clinical information, scans, and tissue samples from patients with DIPG/DMG enrolled in the registry. * To collect tissue samples in order to study how DIPG/DMG works on the molecular level. Researchers may use the tissue samples to study molecules such as proteins and DNA. Proteins are needed for the body to function properly and DNA is the molecule that carries our genetic information. Other researchers will be able to use the stored samples in the future to learn more about DIPG/DMG. The information researchers get from the research studies will be kept in the registry along with the clinical information. * To help investigators around the world to work together to make more consistent diagnosis and better design of future research studies. We hope this will lead to better treatments for DIPG/DMG in the future.

COMPLETED
CED With Irinotecan Liposome Injection Using Real Time Imaging in Children With Diffuse Intrinsic Pontine Glioma (DIPG) (PNOC 009)
Description

This is a Phase I and Early Efficacy Study of Convection Enhanced Delivery (CED) of irinotecan liposome injection (nal-IRI) Using Real Time Imaging with Gadolinium in Children with Diffuse Intrinsic Pontine Glioma who have completed focal radiotherapy

COMPLETED
Gemcitabine in Newly-Diagnosed Diffuse Intrinsic Pontine Glioma
Description

Diffuse Intrinsic Pontine Glioma (DIPG) is an aggressive childhood brain tumor that, despite many past clinical trials, has never been shown to respond to chemotherapy. Radiation therapy (RT) is effective in extending life but is not curative; median overall survival is 11 months. It is still unclear why the hundreds of clinical trials involving chemotherapy of DIPG have failed to demonstrate any activity against the tumor. Given that many agents tried in clinical trials cross the blood brain barrier (BBB), it is possible that there are factors specific to DIPG and its location that prevent adequate drug penetration. Gemcitabine has been selected for this study because there is strong evidence of DIPG cell line inhibition in vitro and good BBB penetration. Furthermore, pediatric dosing and toxicity has been established in prior studies of children with relapsed solid tumors and leukemia. The primary aim of this study is to determine the presence of gemcitabine in childhood DIPG tissue after systemic treatment with the drug. The secondary aim is to quantify the intratumoral gemcitabine concentration after systemic treatment. Participants in this study will be given a one time IV dose of gemcitabine prior to having standard of care surgery. During surgery biopsies will be obtained for clinical and research purposes along with a blood sample. Because patients will be undergoing this biopsy as part of their standard of care therapy here at Children's Hospital Colorado, this is an optimal time to obtain a tumor biopsy for this study. The biopsy will serve to see if the study drug is penetrating the tumor. Patients will then enter a follow-up period for 30 days post surgery.

SUSPENDED
A Study of Atengenal and Astugenal in Diffuse, Intrinsic Pontine Glioma (DIPG)
Description

Current therapies for diffuse, intrinsic pontine glioma (DIPG) provide very limited benefit to the patient. The rationale for the use of Antineoplaston therapy in this protocol study derives from experience with subjects from prior Phase 2 studies and Compassionate Exemption patients treated with Antineoplaston therapy at the Burzynski Clinic. This study is designed to analyze the efficacy and safety of Antineoplaston therapy in five separate DIPG patient cohorts, which are defined by age and prior therapy. This is a two stage study with 20 patients in each cohort being enrolled in the first stage and an additional 20 patients being enrolled in the second stage, if pre-determined efficacy endpoints in the first stage are realized.

COMPLETED
Trial of Panobinostat in Children With Diffuse Intrinsic Pontine Glioma
Description

This phase I trial studies the side effects and best dose of panobinostat in treating younger patients with diffuse intrinsic pontine glioma (DIPG). Panobinostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Stratum 1 treats patients with DIPG that has returned or gotten worse (progressed). Stratum 2 treats patients with DIPG or H3K27+Thalamic Diffuse Malignant Glioma (DMG) that has not yet gotten worse.

Conditions
COMPLETED
Vorinostat and Temsirolimus With or Without Radiation Therapy in Treating Younger Patients With Newly Diagnosed or Progressive Diffuse Intrinsic Pontine Glioma
Description

This phase I trial studies the side effects and best dose of temsirolimus when given together with vorinostat and with or without radiation therapy in treating younger patients with newly diagnosed or progressive diffuse intrinsic pontine glioma, a tumor that arises from the middle portion of the brain stem. Vorinostat and temsirolimus may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Giving temsirolimus and vorinostat with or without radiation therapy may be a better treatment for younger patients with diffuse intrinsic pontine glioma.

ACTIVE_NOT_RECRUITING
Pembrolizumab in Treating Younger Patients With Recurrent, Progressive, or Refractory High-Grade Gliomas, Diffuse Intrinsic Pontine Gliomas, Hypermutated Brain Tumors, Ependymoma or Medulloblastoma
Description

This phase I trial studies the side effects and best dose of pembrolizumab and to see how well it works in treating younger patients with high-grade gliomas (brain tumors that are generally expected to be fast growing and aggressive), diffuse intrinsic pontine gliomas (brain stem tumors), brain tumors with a high number of genetic mutations, ependymoma or medulloblastoma that have come back (recurrent), progressed, or have not responded to previous treatment (refractory). Immunotherapy with monoclonal antibodies, such as pembrolizumab, may induce changes in the body's immune system, and may interfere with the ability of tumor cells to grow and spread.

COMPLETED
Adavosertib and Local Radiation Therapy in Treating Children With Newly Diagnosed Diffuse Intrinsic Pontine Gliomas
Description

This phase I trial studies the side effects and the best dose of adavosertib when given together with local radiation therapy in treating children with newly diagnosed diffuse intrinsic pontine gliomas. Adavosertib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Radiation therapy uses high energy x-rays, gamma rays, neutrons, protons, or other sources to kill tumor cells and shrink tumors. Giving adavosertib with local radiation therapy may work better than local radiation therapy alone in treating diffuse intrinsic pontine gliomas.

COMPLETED
Intra-arterial Chemotherapy for the Treatment of Progressive Diffuse Intrinsic Pontine Gliomas (DIPG).
Description

The goal of this pilot study is to determine if intra-arterial (IA) chemotherapy is safe in the treatment of progressive diffuse intrinsic pontine gliomas (DIPG). IA administration of the chemotherapeutic agent enhances the regional distribution of the drug, thereby increasing the local delivered dose while minimizing systemic toxicity. It also provides a treatment option for these patients at the time of tumor recurrence.

COMPLETED
Diffuse Intrinsic Pontine Glioma (DIPG) Reirradiation (ReRT)
Description

The goal of this clinical research study is to find a safe dose of radiation that can be given to patients with brainstem glioma who have already received radiation therapy. You will receive photon radiation therapy. This type of radiation is similar to the radiation you have already had. Conformal radiotherapy or intensity modulated radiotherapy (IMRT) will be used to try to treat the tumor while affecting as little of the surrounding normal tissue as possible.

Conditions
COMPLETED
PDGFR Inhibitor Crenolanib in Children/Young Adults With Diffuse Intrinsic Pontine Glioma or Recurrent High-Grade Glioma
Description

This is a Phase I clinical trial evaluating crenolanib (CP-868,596), an inhibitor of Platelet Derived Growth Factor Receptor (PDGFR)-kinase in children and young adults with newly diagnosed diffuse intrinsic pontine glioma (DIPG) (Stratum A) or in recurrent, progressive or refractory High Grade Glioma (HGG) including DIPG (Stratum B). This study drug targets the most commonly amplified region of genome found in DIPG and pediatric high grade glioma (HGG) which encodes for the PDGF receptor kinase. An oral investigational agent crenolanib will be administered daily during and after local radiation therapy (RT) in Diffuse Intrinsic Pontine Glioma DIPG (Stratum A), or daily for children with recurrent/refractory HGG (Stratum B).

COMPLETED
Lenalidomide and Radiation Therapy in High Grade Gliomas or Diffuse Intrinsic Pontine Gliomas
Description

Background: - Children who are diagnosed with brain tumors known as high grade gliomas or diffuse intrinsic pontine gliomas are generally treated with radiation therapy and chemotherapy. However, these tumors are very difficult to cure, and the tumor frequently begins to grow again even after treatment or surgery. Researchers are interested in determining whether the anticancer drug lenalidomide, which has been used to treat other aggressive types of cancer, is a safe and effective additional treatment for children who are scheduled to receive radiation therapy to treat high grade gliomas or diffuse intrinsic pontine gliomas. Objectives: - To determine the safety and effectiveness of lenalidomide, in conjunction with radiation therapy, as a treatment for children who have been diagnosed with high grade gliomas or diffuse intrinsic pontine gliomas. Eligibility: - Children and adolescents up to 21 years of age who have been diagnosed with high grade gliomas or diffuse intrinsic pontine gliomas and have not had radiotherapy or chemotherapy. Design: * Participants will be screened with a medical history, physical examination, blood and urine tests, and imaging studies. * Participants will have two phases of treatment: a lenalidomide plus radiation phase and a lenalidomide-only phase. * During the radiation phase, participants will take lenalidomide daily and have 6 weeks of radiation therapy (five treatments per week). After the radiation therapy, participants will stop taking lenalidomide for 2 weeks before continuing to the next phase. * During the lenalidomide-only phase, participants will take lenalidomide daily for 21 days, followed by 7 days without lenalidomide (28-day cycle of treatment). Participants will have up to 24 cycles of lenalidomide. * Participants will have frequent blood tests during the first cycle of treatment, and will have imaging studies or other tests as required by the study researchers. * Treatment will continue until the disease progresses, the participant chooses to leave the study, or the researchers end the study.

COMPLETED
Vorinostat and Radiation Therapy Followed by Maintenance Therapy With Vorinostat in Treating Younger Patients With Newly Diagnosed Diffuse Intrinsic Pontine Glioma
Description

This phase I/II trial studies the side effects and best dose of vorinostat and to see how well it works when given together with radiation therapy followed by maintenance therapy with vorinostat in treating younger patients with newly diagnosed diffuse intrinsic pontine glioma (a brainstem tumor). Vorinostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Radiation therapy uses high-energy x-rays to kill tumor cells. Giving vorinostat together with radiation therapy may kill more tumor cells.

TERMINATED
Molecularly Determined Treatment of Diffuse Intrinsic Pontine Gliomas (DIPG)
Description

Diagnosis of diffuse intrinsic pontine glioma (DIPG) for decades has relied on imaging studies and clinical findings. Histologic confirmation has been absent with surgical biopsy of brainstem tumors not believed to have acceptable safety. The prognosis of DIPG has remained quite poor and novel therapeutic strategies are needed. This DIPG Biology and Treatment Study (DIPG-BATS) study incorporates a surgical biopsy at presentation using strict preoperative neurosurgical planning and stratifies participants to receive FDA-approved agents chosen on the basis of specific biologic targets. This is the first prospective national clinical trial to examine the feasibility and safety of incorporating surgical biopsy into potential treatment strategies for children with DIPG.

RECRUITING
Molecular Analysis of Samples From Patients With Diffuse Intrinsic Pontine Glioma and Brainstem Glioma
Description

The purpose of this study is to prospectively collect specimens from pediatric patients with diffuse intrinsic pontine glioma or brainstem glioma, either during therapy or at autopsy, in order to characterize the molecular abnormalities of this tumor.

TERMINATED
Phase I Rindopepimut After Conventional Radiation in Children w/ Diffuse Intrinsic Pontine Gliomas
Description

This is a research study of patients with diffuse intrinsic pontine gliomas. We hope to learn about the safety and efficacy of treating pediatric diffuse intrinsic pontine glioma patients with the EGFRvIII peptide vaccine after conventional radiation.

COMPLETED
Clinical Trial Evaluating the Combination of Vandetanib and Dasatinib During and After Radiation Therapy (RT) in Children With Newly Diagnosed Diffuse Intrinsic Pontine Glioma (DIPG)
Description

This is a Phase I clinical trial evaluating the combination of vandetanib and dasatinib during and after radiation therapy (RT) in children with newly diagnosed diffuse intrinsic pontine glioma (DIPG).

COMPLETED
A Study of Bevacizumab Therapy in Patients With Newly Diagnosed High-Grade Gliomas and Diffuse Intrinsic Pontine Gliomas
Description

The outcome for children with high-grade gliomas and diffuse intrinsic brainstem gliomas remains poor despite the use of multi-modal therapy with surgery, radiation therapy and chemotherapy.

COMPLETED
Valproic Acid, Radiation, and Bevacizumab in Children With High Grade Gliomas or Diffuse Intrinsic Pontine Glioma
Description

Currently, there are few effective treatments for the following aggressive brain tumors: glioblastoma multiforme, anaplastic astrocytoma, gliomatosis cerebri, gliosarcoma, or brainstem glioma. Surgery and radiation can generally slow down these aggressive brain tumors, but in the majority of patients, these tumors will start growing again in 6-12 months. Adding chemotherapy drugs to surgery and radiation does not clearly improve the cure rate of children with malignant gliomas. The investigators are conducting this study to see if the combination of valproic acid and bevacizumab (also known as AvastinTM) with surgery and radiation will shrink these brain tumors more effectively and improve the chance of cure.