101 Clinical Trials for Various Conditions
This is an open-label, comprehensive, iterative investigation of evaluating the use of induction chemotherapy, high-dose chemotherapy, and focal radiation therapy in children with newly diagnosed Embryonal Tumor With Multilayered Rosettes (ETMR).
This research is being done to find out more information about a brain tumor called Embryonal Tumor with Multilayer Rosettes (ETMR) by collecting medical information from children who have this disease. The purpose of this research study is to create and maintain a research database for patients with ETMR. The database will include information about occurrence rates, patient information, tumor tissue information, and response to treatment. This will help advance our understanding of this rare disease. In addition, this study will include obtaining survival data and evaluating therapeutic response to expert consensus therapy, and procuring patient tumor tissue.
This is a prospective randomized clinical trial, to determine whether dose-intensive tandem Consolidation, in a randomized comparison with single cycle Consolidation, provides an event-free survival (EFS) and overall survival (OS). The study population will be high-risk patients (non-Wnt and non-Shh sub-groups) with medulloblastoma, and for all patients with central nervous system (CNS) embryonal tumors completing "Head Start 4" Induction. This study will further determine whether the additional labor intensity (duration of hospitalizations and short-term and long-term morbidities) associated with the tandem treatment is justified by the improvement in outcome. It is expected that the tandem (3 cycles) Consolidation regimen will produce a superior outcome compared to the single cycle Consolidation, given the substantially higher dose intensity of the tandem regimen, without significant addition of either short-term or long-term morbidities.
This pilot clinical trial studies the side effects and the best way to give vorinostat with isotretinoin and combination chemotherapy and to see how well they work in treating younger patients with embryonal tumors of the central nervous system. Vorinostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as isotretinoin, vincristine sulfate, cisplatin, cyclophosphamide, and etoposide phosphate, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving vorinostat with isotretinoin and combination chemotherapy may be an effective treatment for embryonal tumors of the central nervous system. A peripheral blood stem cell transplant may be able to replace blood-forming cells that were destroyed by chemotherapy. This may allow more chemotherapy to be given so that more tumor cells are killed.
RATIONALE: Drugs used in chemotherapy, such as carboplatin and vincristine, work in different ways to stop tumor cells from dividing so they stop growing or die. Radiation therapy uses high-energy x-rays to damage tumor cells. Combining carboplatin and vincristine with radiation therapy followed by adjuvant chemotherapy may kill more tumor cells. PURPOSE: Randomized phase II trial to study the effectiveness of combination chemotherapy plus radiation therapy followed adjuvant chemotherapy in treating young patients who have newly diagnosed high-risk CNS embryonal tumors.
This phase I trial studies the side effects and best dose of ribociclib and everolimus and to see how well they work in treating patients with malignant brain tumors that have come back or do not respond to treatment. Ribociclib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as everolimus, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving ribociclib and everolimus may work better at treating malignant brain tumors.
This phase I/II trial studies the side effects and best dose of adavosertib and irinotecan hydrochloride in treating younger patients with solid tumors that have come back (relapsed) or that have not responded to standard therapy (refractory). Adavosertib and irinotecan hydrochloride may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This phase I/II trial studies the side effects and best dose of melphalan when given together with carboplatin, mannitol, and sodium thiosulfate, and to see how well they work in treating patients with central nervous system (CNS) embryonal or germ cell tumors that is growing, spreading, or getting worse (progressive) or has come back (recurrent). Drugs used in chemotherapy, such as melphalan and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Osmotic blood-brain barrier disruption (BBBD) uses mannitol to open the blood vessels around the brain and allow cancer-killing substances to be carried directly to the brain. Sodium thiosulfate may help lessen or prevent hearing loss and toxicities in patients undergoing chemotherapy with carboplatin and BBBD. Giving melphalan together with carboplatin, mannitol, and sodium thiosulfate may be an effective treatment for recurrent or progressive CNS embryonal or germ cell tumors.
This phase III trial is studying surgery followed by combination chemotherapy to see how well it works in treating children with germ cell tumors that are not located in the head. Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining more than one drug, and giving them after surgery, may kill any remaining tumor cells following surgery. It is not yet known whether combination chemotherapy is effective in decreasing the recurrence of childhood germ cell tumors.
RATIONALE: Genetic studies may help in understanding the genetic processes involved in the development of some types of cancer. PURPOSE: Genetic study to learn more about genes involved in the development of central nervous system tumors in young children.
This is an open-label phase 1 safety and feasibility study that will employ multi-tumor antigen specific cytotoxic T lymphocytes (TSA-T) directed against proteogenomically determined personalized tumor-specific antigens (TSA) derived from a patient's primary brain tumor tissues. Young patients with embryonal central nervous system (CNS) malignancies typically are unable to receive irradiation due to significant adverse effects and are treated with intensive chemotherapy followed by autologous stem cell rescue; however, despite intensive therapy, many of these patients relapse. In this study, individualized TSA-T cells will be generated against proteogenomically determined tumor-specific antigens after standard of care treatment in children less than 5 years of age with embryonal brain tumors. Correlative biological studies will measure clinical anti-tumor, immunological and biomarker effects.
This study will evaluate the safety and efficacy of Lutathera (177Lu-DOTATATE) in patients with progressive or recurrent High-Grade Central Nervous System (CNS) tumors and meningiomas that demonstrate uptake on DOTATATE PET. The drug will be given intravenously once every 8 weeks for a total of up to 4 doses over 8 months in patients aged 4 to \<12 years (Phase I) or 12 to \</=39 years (Phase II) to test its safety and efficacy, respectively. Funding Source - FDA OOPD (grant number FD-R-0532-01)
In this study, there are two treatment groups called Cohort 1 and Cohort 2. Cohort 1 is for patients with diffuse midline glioma, high grade glioma, diffuse intrinsic pontine glioma, medulloblastoma, or another rare brain cancer that expresses GD2. Cohort 2 is for patients with a type of cancer called progressive pontine diffuse midline glioma (DMG), high grade glioma or diffuse intrinsic pontine glioma that expresses GD2. Because there is no standard treatment at this time, patients are asked to volunteer in a gene transfer research study using special immune cells called T cells. T cells are a type of white blood cell that help the body fight infection. This research study combines two different ways of fighting cancer: antibodies and T cells. Both antibodies and T cells have been used to treat cancer patients. They have shown promise but have not been strong enough to cure most patients. Researchers have found from previous research that they can put a new antibody gene into T cells that will make them recognize cancer cells and kill them. GD2 is a protein found on several different cancers. Researchers testing brain cancer cells found that many of these cancers also have GD2 on their surface. In a study for neuroblastoma in children, a gene called a chimeric antigen receptor (CAR) was made from an antibody that recognizes GD2. This gene was put into the patients own T cells and given back to 11 patients. The cells did grow for a while but started to disappear from the blood after 2 weeks. The researchers think that if T cells are able to last longer they may have a better chance of killing tumor cells. In this study, a new gene will be added to the GD2 T cells that can cause the cells to live longer. T cells need substances called cytokines to survive. The gene C7R has been added that gives the cells a constant supply of cytokine and helps them to survive for a longer period of time. In other studies using T cells researchers found that giving chemotherapy before the T cell infusion can improve the amount of time the T cells stay in the body and therefore the effect the T cells can have. This is called lymphodepletion and it will allow the T cells to expand and stay longer in the body and potentially kill cancer cells more effectively. After treating 11 patients, the largest safe dose of GD2-CAR T cells given in the vein (IV) was determined. Going forward, we will combine IV infusions with infusions directly into the brain through the Ommaya reservoir or programmable VP shunt. The goal is to find the largest safe dose of GD2-C7R T cells that can be administered in this way. Patients will now be assigned to Cohort 1 and 2 based on their tumor type with different dose levels for each cohort. The GD2.C7R T cells are an investigational product not approved by the FDA. The purpose of this study is to combine infusions into the vein in the first treatment cycle with infusions directly into the cerebrospinal fluid (CSF) in the brain (intracerebroventricularly) through the ommaya reservoir or programmable VP shunt for the second infusion cycle and possibly additional infusions after that. The goal is to find the largest safe dose of GD2-C7R T cells that can be administered in this way, and additionally to evaluate how long they can be detected in the blood and CSF and what affect they have on brain cancer.
To provide DFMO in an expanded use setting to subjects with relapsed rare tumors with increased LIN28 expression or MYCN amplification or up regulation of ornithine decarboxylase.
Approximately 90% of children with malignant brain tumors that have recurred or relapsed after receiving conventional therapy will die of disease. Despite this terrible and frustrating outcome, continued treatment of this population remains fundamental to improving cure rates. Studying this relapsed population will help unearth clues to why conventional therapy fails and how cancers continue to resist modern advances. Moreover, improvements in the treatment of this relapsed population will lead to improvements in upfront therapy and reduce the chance of relapse for all. Novel therapy and, more importantly, novel approaches are sorely needed. This trial proposes a new approach that evaluates rational combination therapies of novel agents based on tumor type and molecular characteristics of these diseases. The investigators hypothesize that the use of two predictably active drugs (a doublet) will increase the chance of clinical efficacy. The purpose of this trial is to perform a limited dose escalation study of multiple doublets to evaluate the safety and tolerability of these combinations followed by a small expansion cohort to detect preliminary efficacy. In addition, a more extensive and robust molecular analysis of all the participant samples will be performed as part of the trial such that we can refine the molecular classification and better inform on potential response to therapy. In this manner the tolerability of combinations can be evaluated on a small but relevant population and the chance of detecting antitumor activity is potentially increased. Furthermore, the goal of the complementary molecular characterization will be to eventually match the therapy with better predictive biomarkers. PRIMARY OBJECTIVES: * To determine the safety and tolerability and estimate the maximum tolerated dose/recommended phase 2 dose (MTD/RP2D) of combination treatment by stratum. * To characterize the pharmacokinetics of combination treatment by stratum. SECONDARY OBJECTIVE: * To estimate the rate and duration of objective response and progression free survival (PFS) by stratum.
The purpose of the study is to confirm the safety of the selected dose and potential toxicity of oncolytic poliovirus (PV) immunotherapy with PVSRIPO for pediatric patients with recurrent WHO grade III or IV malignant glioma, but evidence for efficacy will also be sought. The primary objective is to confirm the safety of the selected dose of PVSRIPO when delivered intracerebrally by convection-enhanced delivery (CED) in children with recurrent WHO Grade III malignant glioma (anaplastic astrocytoma, anaplastic oligoastrocytoma, anaplastic oligodendroglioma, anaplastic pleomorphic xanthoastrocytoma) or WHO Grade IV malignant glioma (glioblastoma, gliosarcoma). A secondary objective is to estimate overall survival (OS) in this population.
The purpose of this research study is to test an experimental treatment method for recurrent or progressive brain tumors in children aged from 0-22 years. The use of methotrexate and chemotherapy (topotecan and cyclophosphamide) is experimental in this study. This means that their use by themselves or together has not been approved by the U.S. Food and Drug Administration for this usage.
This study is a clinical trial to determine the safety of injecting G207 (a new experimental virus therapy) into a recurrent or progressive brain tumor. The safety of combining G207 with a single low dose of radiation, designed to enhance virus replication and tumor cell killing, will also be tested.
This phase I/II clinical trial is studying the side effects and best dose of gamma-secretase inhibitor RO4929097 and to see how well it works in treating young patients with relapsed or refractory solid tumors, CNS tumors, lymphoma, or T-cell leukemia. Gamma-secretase inhibitor RO4929097 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
This phase I trial is studying the side effects and best dose of vorinostat when given together with temozolomide in treating young patients with relapsed or refractory primary brain tumors or spinal cord tumors. Vorinostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Vorinostat may help temozolomide work better by making tumor cells more sensitive to the drug.
This phase I trial is studying the side effects and best dose of vorinostat when given together with bortezomib in treating young patients with refractory or recurrent solid tumors, including CNS tumors and lymphoma. Vorinostat and bortezomib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor.
This phase I trial is studying the side effects and best dose of pazopanib hydrochloride in treating young patients with solid tumors that have relapsed or not responded to treatment. Pazopanib hydrochloride may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor.
The purpose of this study is to collect and store brain tissue samples and blood from children with brain cancer that will be tested in the laboratory. Collecting and storing samples of tumor tissue and blood from patients to test in the laboratory may help the study of cancer in the future.
This phase I trial is studying the side effects and best dose of sunitinib in treating young patients with refractory solid tumors. Sunitinib may stop the growth of tumor cells by blocking some of the enzymes needed for their growth and by blocking blood flow to the tumor.
This randomized phase III trial is studying two different combination chemotherapy regimens to compare how well they work in treating young patients with newly diagnosed supratentorial primitive neuroectodermal tumors or high-risk medulloblastoma when given before additional intense chemotherapy followed by peripheral blood stem cell rescue. It is not yet known which combination chemotherapy regimen is more effective when given before a peripheral stem cell transplant in treating supratentorial primitive neuroectodermal tumors or medulloblastoma.
This phase I trial is studying the side effects and best dose of oxaliplatin when given together with leucovorin and fluorouracil in treating young patients with advanced solid tumors. Drugs used in chemotherapy, such as oxaliplatin, leucovorin, and fluorouracil, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more tumor cells.
This study will attempt to demonstrate the efficacy of Sodium Thiosulfate (STS) in preventing hearing loss in patients re-treated with cisplatin-based therapy according to regimens Cisplatin and STS (regimen CS) and Cisplatin, STS and Vorinostat/SAHA (regimen CSS).
The researchers are doing this study to provide access to treatment with 131I-omburtamab for children and young adults who have CNS/leptomeningeal neoplasms. 131I-omburtamab is an investigational drug; the FDA has not approved it to treat this cancer or any other disease. However, the agency has granted the drug Breakthrough Therapy Designation for the treatment of neuroblastoma with CNS metastases.
This study is a clinical trial to determine the safety of inoculating G207 (an experimental virus therapy) into a recurrent or refractory cerebellar brain tumor. The safety of combining G207 with a single low dose of radiation, designed to enhance virus replication, tumor cell killing, and an anti-tumor immune response, will also be tested. Funding Source- FDA OOPD
Historically, medulloblastoma treatment has been determined by the amount of leftover disease present after surgery, also known as clinical risk (standard vs. high risk). Recent studies have shown that medulloblastoma is made up of distinct molecular subgroups which respond differently to treatment. This suggests that clinical risk alone is not adequate to identify actual risk of recurrence. In order to address this, we will stratify medulloblastoma treatment in this phase II clinical trial based on both clinical risk (low, standard, intermediate, or high risk) and molecular subtype (WNT, SHH, or Non-WNT Non-SHH). This stratified clinical and molecular treatment approach will be used to evaluate the following: * To find out if participants with low-risk WNT tumors can be treated with a lower dose of radiation to the brain and spine, and a lower dose of the chemotherapy drug cyclophosphamide while still achieving the same survival rate as past St. Jude studies with fewer side effects. * To find out if adding targeted chemotherapy after standard chemotherapy will benefit participants with SHH positive tumors. * To find out if adding new chemotherapy agents to the standard chemotherapy will improve the outcome for intermediate and high risk Non-WNT Non-SHH tumors. * To define the cure rate for standard risk Non-WNT Non-SHH tumors treated with reduced dose cyclophosphamide and compare this to participants from the past St. Jude study. All participants on this study will have surgery to remove as much of the primary tumor as safely possible, radiation therapy, and chemotherapy. The amount of radiation therapy and type of chemotherapy received will be determined by the participant's treatment stratum. Treatment stratum assignment will be based on the tumor's molecular subgroup assignment and clinical risk. The participant will be assigned to one of three medulloblastoma subgroups determined by analysis of the tumor tissue for tumor biomarkers: * WNT (Strata W): positive for WNT biomarkers * SHH (Strata S): positive for SHH biomarkers * Non-WNT Non-SHH, Failed, or Indeterminate (Strata N): negative for WNT and SHH biomarkers or results are indeterminable Participants will then be assigned to a clinical risk group (low, standard, intermediate, or high) based on assessment of: * How much tumor is left after surgery * If the cancer has spread to other sites outside the brain \[i.e., to the spinal cord or within the fluid surrounding the spinal cord, called cerebrospinal fluid (CSF)\] * The appearance of the tumor cells under the microscope * Whether or not there are chromosomal abnormalities in the tumor, and if present, what type (also called cytogenetics analysis)