Treatment Trials

9 Clinical Trials for Various Conditions

Focus your search

RECRUITING
Treatment of Relapsed/Refractory Intracranial Glioma in Patients Under 22 Years of Age
Description

This study assesses the safety and efficacy of repeat monthly dosing of super-selective intra-arterial cerebral infusion (SIACI) of cetuximab and bevacizumab in patients \< 22 years of age.

RECRUITING
Testing Cerebrospinal Fluid for Cell-free Tumor DNA in Children, Adolescents, and Young Adults with Brain Tumors
Description

Recent advances in technology have allowed for the detection of cell-free DNA (cfDNA). cfDNA is tumor DNA that can be found in the fluid that surrounds the brain and spinal cord (called cerebrospinal fluid or CSF) and in the blood of patients with brain tumors. The detection of cfDNA in blood and CSF is known as a "liquid biopsy" and is non-invasive, meaning it does not require a surgery or biopsy of tumor tissue. Multiple studies in other cancer types have shown that cfDNA can be used for diagnosis, to monitor disease response to treatment, and to understand the genetic changes that occur in brain tumors over time. Study doctors hope that by studying these tests in pediatric brain tumor patients, they will be able to use liquid biopsy in place of tests that have more risks for patients, like surgery. There is no treatment provided on this study. Patients who have CSF samples taken as part of regular care will be asked to provide extra samples for this study. The study doctor will collect a minimum of one extra tube of CSF (about 1 teaspoon or 5 mL) for this study. If the patients doctor thinks it is safe, up to 2 tubes of CSF (about 4 teaspoons or up to 20 mL) may be collected. CSF will be collected through the indwelling catheter device or through a needle inserted into the lower part of the patient's spine (known as a spinal tap or lumbar puncture). A required blood sample (about ½ a teaspoon or 2 3 mL) will be collected once at the start of the study. This sample will be used to help determine changes found in the CSF. Blood will be collected from the patient's central line or arm as a part of regular care. An optional tumor tissue if obtained within 8 weeks of CSF collection will be collected if available. Similarities between changes in the DNA of the tissue that has caused the tumor to form and grow with the cfDNA from CSF will be compared. This will help understand if CSF can be used instead of tumor tissue for diagnosis. Up to 300 people will take part in this study. This study will use genetic tests that may identify changes in the genes in the CSF. The report of the somatic mutations (the mutations that are found in the tumor only) will become part of the medical record. The results of the cfDNA sequencing will be shared with the patient. The study doctor will discuss what the results mean for the patient and patient's diagnosis and treatment. Looking for inheritable mutations in normal cells (blood) is not the purpose of this study. Genetic tests of normal blood can reveal information about the patient and also about the their relatives. The doctor will discuss what the tests results may mean for the patient and the their family. Patient may be monitored on this study for up to 5 years.

WITHDRAWN
Efficacy of 68Ga-DOTATOC Positron Emission Tomography (PET) CT in Children and Young Adults With Brain Tumors
Description

This pilot clinical trial studies gallium Ga 68-edotreotide (68Ga-DOTATOC) positron emission tomography (PET)/computed tomography (CT) in finding brain tumors in younger patients. Diagnostic procedures, such as gallium Ga 68-edotreotide PET/CT imaging, may help find and diagnose brain tumors.

Conditions
Acoustic SchwannomaAdult Anaplastic AstrocytomaAdult Anaplastic EpendymomaAdult Anaplastic MeningiomaAdult Anaplastic OligodendrogliomaAdult Brain Stem GliomaAdult Choroid Plexus TumorAdult CraniopharyngiomaAdult Diffuse AstrocytomaAdult EpendymoblastomaAdult EpendymomaAdult Giant Cell GlioblastomaAdult GlioblastomaAdult GliosarcomaAdult Grade I MeningiomaAdult Grade II MeningiomaAdult MedulloblastomaAdult Meningeal HemangiopericytomaAdult Mixed GliomaAdult Myxopapillary EpendymomaAdult OligodendrogliomaAdult Papillary MeningiomaAdult Pilocytic AstrocytomaAdult Pineal Gland AstrocytomaAdult PineoblastomaAdult PineocytomaAdult Subependymal Giant Cell AstrocytomaAdult SubependymomaAdult Supratentorial Primitive Neuroectodermal Tumor (PNET)Childhood Choroid Plexus TumorChildhood CraniopharyngiomaChildhood EpendymoblastomaChildhood Grade I MeningiomaChildhood Grade II MeningiomaChildhood Grade III MeningiomaChildhood High-grade Cerebellar AstrocytomaChildhood High-grade Cerebral AstrocytomaChildhood Infratentorial EpendymomaChildhood Low-grade Cerebellar AstrocytomaChildhood Low-grade Cerebral AstrocytomaChildhood MedulloepitheliomaChildhood Supratentorial EpendymomaMeningeal MelanocytomaNewly Diagnosed Childhood EpendymomaRecurrent Adult Brain TumorRecurrent Childhood Anaplastic AstrocytomaRecurrent Childhood Anaplastic OligoastrocytomaRecurrent Childhood Anaplastic OligodendrogliomaRecurrent Childhood Brain Stem GliomaRecurrent Childhood Cerebellar AstrocytomaRecurrent Childhood Cerebral AstrocytomaRecurrent Childhood Diffuse AstrocytomaRecurrent Childhood EpendymomaRecurrent Childhood Fibrillary AstrocytomaRecurrent Childhood Gemistocytic AstrocytomaRecurrent Childhood Giant Cell GlioblastomaRecurrent Childhood GlioblastomaRecurrent Childhood Gliomatosis CerebriRecurrent Childhood GliosarcomaRecurrent Childhood MedulloblastomaRecurrent Childhood OligoastrocytomaRecurrent Childhood OligodendrogliomaRecurrent Childhood Pilocytic AstrocytomaRecurrent Childhood Pilomyxoid AstrocytomaRecurrent Childhood PineoblastomaRecurrent Childhood Pleomorphic XanthoastrocytomaRecurrent Childhood Protoplasmic AstrocytomaRecurrent Childhood Subependymal Giant Cell AstrocytomaRecurrent Childhood Supratentorial Primitive Neuroectodermal TumorRecurrent Childhood Visual Pathway and Hypothalamic GliomaRecurrent Childhood Visual Pathway GliomaUntreated Childhood Anaplastic AstrocytomaUntreated Childhood Anaplastic OligodendrogliomaUntreated Childhood Brain Stem GliomaUntreated Childhood Cerebellar AstrocytomaUntreated Childhood Cerebral AstrocytomaUntreated Childhood Diffuse AstrocytomaUntreated Childhood Fibrillary AstrocytomaUntreated Childhood Gemistocytic AstrocytomaUntreated Childhood Giant Cell GlioblastomaUntreated Childhood GlioblastomaUntreated Childhood Gliomatosis CerebriUntreated Childhood GliosarcomaUntreated Childhood MedulloblastomaUntreated Childhood OligoastrocytomaUntreated Childhood OligodendrogliomaUntreated Childhood Pilocytic AstrocytomaUntreated Childhood Pilomyxoid AstrocytomaUntreated Childhood PineoblastomaUntreated Childhood Pleomorphic XanthoastrocytomaUntreated Childhood Protoplasmic AstrocytomaUntreated Childhood Subependymal Giant Cell AstrocytomaUntreated Childhood Supratentorial Primitive Neuroectodermal TumorUntreated Childhood Visual Pathway and Hypothalamic GliomaUntreated Childhood Visual Pathway Glioma
TERMINATED
18F-FDOPA PET/CT or PET/MRI in Measuring Tumors in Patients With Newly-Diagnosed or Recurrent Gliomas
Description

To evaluate 18F-FDOPA PET obtained from PET/CT or PET/MRI imaging in patients with newly diagnosed or recurrent gliomas.

Conditions
Adult Anaplastic EpendymomaAdult Anaplastic OligodendrogliomaAdult Brain Stem GliomaAdult Diffuse AstrocytomaAdult Giant Cell GlioblastomaAdult GlioblastomaAdult GliosarcomaAdult Mixed GliomaAdult OligodendrogliomaAdult Pilocytic AstrocytomaAdult Pineal Gland AstrocytomaAdult Subependymal Giant Cell AstrocytomaChildhood High-grade Cerebellar AstrocytomaChildhood High-grade Cerebral AstrocytomaChildhood Low-grade Cerebellar AstrocytomaChildhood Low-grade Cerebral AstrocytomaRecurrent Adult Brain TumorRecurrent Childhood Anaplastic AstrocytomaRecurrent Childhood Anaplastic OligoastrocytomaRecurrent Childhood Anaplastic OligodendrogliomaRecurrent Childhood Brain Stem GliomaRecurrent Childhood Cerebellar AstrocytomaRecurrent Childhood Cerebral AstrocytomaRecurrent Childhood Diffuse AstrocytomaRecurrent Childhood Fibrillary AstrocytomaRecurrent Childhood Gemistocytic AstrocytomaRecurrent Childhood Giant Cell GlioblastomaRecurrent Childhood GlioblastomaRecurrent Childhood Gliomatosis CerebriRecurrent Childhood GliosarcomaRecurrent Childhood OligoastrocytomaRecurrent Childhood OligodendrogliomaRecurrent Childhood Pilomyxoid AstrocytomaRecurrent Childhood Protoplasmic AstrocytomaRecurrent Childhood Subependymal Giant Cell AstrocytomaRecurrent Childhood Visual Pathway and Hypothalamic GliomaRecurrent Childhood Visual Pathway GliomaUntreated Childhood Anaplastic AstrocytomaUntreated Childhood Anaplastic OligoastrocytomaUntreated Childhood Anaplastic OligodendrogliomaUntreated Childhood Brain Stem GliomaUntreated Childhood Cerebellar AstrocytomaUntreated Childhood Cerebral AstrocytomaUntreated Childhood Diffuse AstrocytomaUntreated Childhood Fibrillary AstrocytomaUntreated Childhood Gemistocytic AstrocytomaUntreated Childhood Giant Cell GlioblastomaUntreated Childhood GlioblastomaUntreated Childhood Gliomatosis CerebriUntreated Childhood GliosarcomaUntreated Childhood OligoastrocytomaUntreated Childhood OligodendrogliomaUntreated Childhood Pilomyxoid AstrocytomaUntreated Childhood Protoplasmic AstrocytomaUntreated Childhood Subependymal Giant Cell AstrocytomaUntreated Childhood Visual Pathway and Hypothalamic GliomaUntreated Childhood Visual Pathway Glioma
TERMINATED
Intraarterial Infusion Of Erbitux and Bevacizumab For Relapsed/Refractory Intracranial Glioma In Patients Under 22
Description

Central nervous system (CNS) malignancies are the second most common malignancy and the most common solid tumor of childhood, including adolescence. Annually in the United States, approximately 2,200 children are diagnosed with CNS malignancy and rates appear to be increasing. CNS tumors are the leading cause of death from solid tumors in children. Survival duration after diagnosis in children is highly variable depending in part on age at diagnosis, location of tumor, and extent of resection; however, most children with high grade glioma die within 3 years of diagnosis. All patients with high grade glioma experience a recurrence after first-line therapy, so improvements in both first-line and salvage therapy are critical to enhancing quality-of-life and prolonging survival. It is unknown if currently used intravenous (IV) therapies even cross the blood brain barrier (BBB). We have shown in previous phase I trials that a single Superselective Intra-arterial Cerebral Infusion (SIACI) of Cetuximab and/or Bevacizumab is safe for the treatment of recurrent glioblastoma multiforme (GBM) in adults, and we are currently evaluating the efficacy of this treatment. Therefore, this phase I/II clinical research trial is an extension of that trial in that we seek to test the hypothesis that intra-arterial Cetuximab and Bevacizumab is safe and effective in the treatment of relapsed/refractory glioma in patients \<22 years of age. We expect that this project will provide important information regarding the utility of SIACI Cetuximab and Bevacizumab therapy for malignant glioma in patients \<22 years of age and may alter the way these drugs are delivered to our patients in the near future.

COMPLETED
Veliparib, Radiation Therapy, and Temozolomide in Treating Younger Patients With Newly Diagnosed Diffuse Pontine Gliomas
Description

This phase I/II trial studies the side effects and the best dose of veliparib when given together with radiation therapy and temozolomide and to see how well they work in treating younger patients newly diagnosed with diffuse pontine gliomas. Veliparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Radiation therapy uses high-energy x rays to kill tumor cells. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells either by killing the cells or by stopping them from dividing. Giving veliparib with radiation therapy and temozolomide may kill more tumor cells.

COMPLETED
Imetelstat Sodium in Treating Young Patients With Refractory or Recurrent Solid Tumors or Lymphoma
Description

RATIONALE: Imetelstat sodium may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. PURPOSE: This phase I clinical trial is studying the side effects and best dose of imetelstat sodium in treating young patients with refractory or recurrent solid tumors or lymphoma.

UNKNOWN
Photodynamic Therapy With Porfimer Sodium in Treating Patients With Refractory Brain Tumors
Description

RATIONALE: Photodynamic therapy uses light and photosensitizing drugs to kill tumor cells and may be an effective treatment for refractory brain tumors. PURPOSE: This phase I trial is studying the side effects and best dose of photodynamic therapy using porfimer sodium in treating patients with refractory brain tumors, including astrocytoma, ependymoma, and medulloblastoma.

TERMINATED
Cyproheptadine in Preventing Weight Loss in Children Receiving Chemotherapy for Cancer
Description

RATIONALE: Cyproheptadine hydrochloride may prevent weight loss caused by cancer or cancer treatment. It is not yet known whether cyproheptadine is more effective than a placebo in preventing weight loss in young patients receiving chemotherapy for cancer. PURPOSE: This randomized phase III trial is studying cyproheptadine hydrochloride to see how well it works in preventing weight loss in young patients receiving chemotherapy for cancer.

Conditions