21 Clinical Trials for Various Conditions
Epileptic spasms (ES) are a predominantly infantile seizure type observed frequently in certain genetic disorders. Ketogenic diet (high ratio of fat to carbohydrate/protein) is an established non-medication treatment for difficult to control seizures, including ES. Because ES are associated with worse developmental and cognitive outcomes if not detected or treated quickly and effectively, this trial aims to test the ketogenic diet to prevent ES in this high-risk population. This trial is a single-center pilot study of 10 infants with genetic seizure disorders to establish if the protocol of early ketogenic diet administration and ES evaluation is safe and feasible.
To evaluate the efficacy of open-label ganaxolone as adjunctive therapy for uncontrolled seizures in female children with PCDH19 mutation and other rare genetic epilepsies in an open-label proof-of-concept study.
This study will compare the effect of NPT 2042 and placebo in subjects with GGE on the frequency and duration of electroencephalographic absence seizures, separated by a 14-day washout period. The study will be a single-center, double-blind, crossover study with subjects receiving either NPT 2042 80 mg BID orally or matching placebo BID in each of two treatment periods.
The goal of this study is to discover new genetic causes of infantile epilepsies and evaluate the impact of these discoveries on infants with epilepsy and their families.
OBJECTIVES: I. Determine the chromosomal regions that contain genes that raise the risk of epilepsy in families by performing genetic linkage analysis of idiopathic/cryptogenic epilepsy.
Epilepsy is a common condition which affects over 3 million people in the US. Patients with uncontrolled epilepsy have a lifetime risk of sudden unexpected death (SUDEP) of 35%, which is greatest in those under 40 years of age. The exact mechanisms and causes are not understood but can be due to underlying conditions which affect the heart and brain, which may lead to dangerous heart rhythms and death. Some of these conditions which affect heart and brain have an identifiable genetic cause. This study aims to identify known genetic causes of heart rhythm and sudden death related disorders in patients with epilepsy.
The reason for this study is to understand if people with certain genes are predisposed to develop severe skin reactions after they are administered Eslicarbazepine Acetate. Currently there is no information that suggests that certain individuals who use Eslicarbazepine Acetate are predisposed to develop severe skin reactions. However, previous research has shown that seizure medicines like carbamazepine (Tegretol®) and oxcarbazepine (Trileptal®, Oxtellar XR®) are more likely to cause severe drug related skin reactions in some people of Asian ancestry who have specific genes. These are genes found in an area of chromosomes called the Major Histocompatibility Complex. This association is called a genetic risk factor. The study objective is to compare information that is obtained from individuals with a history of seizure disorders who develop severe skin reactions while using Eslicarbazepine Acetate to a group of patients who also have a history of seizure disorders and do not have a history of a severe skin reaction after using Eslicarbazepine Acetate.
We are the missing link in clinical trials, connecting patients and researchers seamlessly and conveniently using a mobile health platform to advance medical research. We make it easy for patients to contribute to research for medical conditions that matter most to them, regardless of their location or ability to travel.
Investigators at Boston Children's Hospital are conducting research in order to better understand the genetic factors which may contribute to epilepsy and related disorders. These findings may help explain the broad spectrum of clinical characteristics and outcomes seen in people with epilepsy.
Simons Searchlight is an observational, online, international research program for families with rare genetic variants that cause neurodevelopmental disorders and may be associated with autism. Simons Searchlight collects medical, behavioral, learning, and developmental information from people who have these rare genetic changes. The goal of this study is to improve the clinical care and treatment for these people. Simons Searchlight partners with families to collect data and distribute it to qualified researchers.
This is a a study to identify inherited disease genes. The study will use molecular techniques to map genetic diseases using techniques such as Affymetrix SNP chips. The powerful combination of the information generated by the Human Genome Project and technical advances such as microarrays enables attempts to identify genes responsible for inherited disorders more possible than ever before. Starting with even modest pedigrees of only a few individuals, or even single individuals, it is possible to identify the gene(s) involved. It is proposed to collect up to 20 ml of peripheral blood and/or buccal cell samples from subjects and relevant family members. Currently the following disorders are approved for investigation. The current list of disorders: Aarskog-Scott syndrome, Café-au-Lait spots, Cerebral cavernous malformation, delXp, del2q, del10p, del11q, del12p, del13q, del14q, del16q, del17q, del18q, del Xp21, Choreoathetosis, Congenital Vertical Talus (CVT), Clubfoot, Tarsal coalition and other congenital limb deformities, Cystic Fibrosis (CF)-like disease, Desbuquois syndrome, Droopy Eyelid syndrome (Ptosis), Fanconi-Bickel syndrome (FBS), FENIB (familial encephalopathy with neuroserpin inclusion bodies), FG syndrome, Idiopathic generalised epilepsy (IGE), Renpenning syndrome, transient neonatal diabetes with 6q UPD, translocation (13;14), translocation (3;8), translocation (2;18), Uncharacterized familial dementia and X-linked mental retardation (XLMR).
This study is part of a series of studies that will explore how the mind and the brain work to cause episodes of uncontrollable shaking in people who have no known underlying brain or medical disorder. The study is conducted at NIH and at the Brown University Rhode Island Hospital. Healthy volunteers and people with functional movement disorders (FMD) or non-epileptic seizures (NES) who are 18 years of age or older may be eligible for this study. Patients with NES have 3 teaspoons of blood drawn. The blood is tested for two genes that are normally found in healthy individuals to see if they are found more frequently in patients with uncontrolled shaking. Patients with FMD have blood drawn for testing and also undergo functional magnetic resonance imaging (fMRI) to look at how the brain functions while the subject performs a specific task. MRI uses a strong magnetic field and radio waves to obtain images of body organs and tissues. During the scan, the subject lies on a table that can slide in and out of the scanner, a metal cylinder. The scan lasts about 60 to 90 minutes, during which the subject may be asked to lie still for up to 10 minutes at a time and to perform tasks, such as identifying the gender of faces shown on a screen. Healthy volunteers may have blood drawn for genetic testing or fMRI or both.
The purpose of our study is to identify gene(s) involved in the cause of childhood absence epilepsy (CAE).
The purpose of this study is to learn more about the medical problems and the genetic factors involved in a recently defined form of inherited dementia called "familial dementia with neuroserpin inclusion bodies (FDNIB)." Abnormal substances in nerve cells of patients with this disease affect brain and nervous system function, causing confusion, memory decline and impaired cognition (thinking ability). Patients also develop movement disorders and, possibly, seizures. Symptoms begin in midlife, between 45 and 55 years of age. Patients with FDNIB and family members 18 years of age or older at risk for the disease may be eligible for this 3-year study. Participants will have a medical and family history and review of medical records; interview with a medical geneticist (specialist in genetics); physical, neurological and psychiatric examinations; and the following tests and procedures: 1. Blood tests to assess general health 2. Chest and skull X-rays 3. Electrocardiogram (EKG)-record of the electrical activity of the heart using electrodes placed on the chest 4. Electroencephalogram (EEG)-record of the electrical activity of the brain using electrodes placed on the head 5. Ultrasound of the abdomen-imaging of abdominal organs using sound waves 6. Brain magnetic resonance imaging (MRI)-imaging of the brain using a strong magnetic field and radio waves 7. Hearing evaluation 8. Assessment of performance of daily living activities 9. Single photon emission computed tomography (SPECT)-imaging of brain metabolism and blood flow using a radioactive substance injected into a vein The evaluation will be done over a 3- to 4-day period. At their completion, participants will meet with a physician and a genetics counselor to discuss the clinically significant findings. Participants may be asked to return for follow-up evaluations every 6 months to a year (depending on the individual's condition) for 3 years.
The purpose of this study is to find out more about STXBP1 and SYNGAP1 related disorders. The information gathered by this study will be used to prepare for clinical treatment trials. The primary objective of the study is to better define and outline the clinical spectrum of STXBP1 and SYNGAP1 through detailed developmental, seizure, and quality of life assessments as an extension of routine clinical care.
The "North Carolina Clinical Genomic Evaluation by Next-gen Exome Sequencing, 2 (NCGENES 2)" study is part of a larger consortium project investigating the clinical utility, or net benefit of an intervention on patient and family well-being as well as diagnostic efficacy, management planning, and medical outcomes. A clinical trial will be implemented to compare (1) first-line exome sequencing to usual care and (2) participant pre-visit preparation to no pre-visit preparation. The study will use a randomized controlled design, with 2x2 factorial design, coupled with patient-reported outcomes and comprehensive clinical data collection addressing key outcomes, to determine the net impact of diagnostic results and secondary findings.
SLC13A5 deficiency (Citrate Transporter Disorder, EIEE 25) is a rare genetic disorder with neurodevelopmental delays and seizure onset in the first few days of life. This natural history study is designed to address the lack of understanding of disease progression. Additionally it will identify clinical and biomarker endpoints for use in future clinical trials.
SLC13A5 deficiency (Citrate Transporter Disorder, EIEE 25) is a rare genetic disorder with neurodevelopmental delays and seizure onset in the first few days of life. This natural history study is designed to address the lack of understanding of disease progression and genotype-phenotype correlation. Additionally it will help in identifying clinical endpoints for use in future clinical trials.
Early Check provides voluntary screening of newborns for a selected panel of conditions. The study has three main objectives: 1) develop and implement an approach to identify affected infants, 2) address the impact on infants and families who screen positive, and 3) evaluate the Early Check program. The Early Check screening will lead to earlier identification of newborns with rare health conditions in addition to providing important data on the implementation of this model program. Early diagnosis may result in health and development benefits for the newborns. Infants who have newborn screening in North Carolina will be eligible to participate, equating to over 120,000 eligible infants a year. Over 95% of participants are expected to screen negative. Newborns who screen positive and their parents are invited to additional research activities and services. Parents can enroll eligible newborns on the Early Check electronic Research Portal. Screening tests are conducted on residual blood from existing newborn screening dried blood spots. Confirmatory testing is provided free-of-charge for infants who screen positive, and carrier testing is provided to mothers of infants with fragile X. Affected newborns have a physical and developmental evaluation. Their parents have genetic counseling and are invited to participate in surveys and interviews. Ongoing evaluation of the program includes additional parent interviews.
The North American Mitochondrial Disease Consortium (NAMDC) maintains a patient contact registry and tissue biorepository for patients with mitochondrial disorders.
A clinical study to evaluate the efficacy, safety, and tolerability of adjunctive ganaxolone therapy compared to placebo for the treatment of seizures in children and young adults with genetically confirmed CDKL5 gene mutation.