Treatment Trials

31 Clinical Trials for Various Conditions

Focus your search

RECRUITING
GD2 CAR T Cells in Diffuse Intrinsic Pontine Gliomas(DIPG) & Spinal Diffuse Midline Glioma(DMG)
Description

The primary purpose of this study is to test whether GD2-CAR T cells can be successfully made from immune cells collected from children and young adults with H3K27M-mutant diffuse intrinsic pontine glioma (DIPG) or spinal H3K27M-mutant diffuse midline glioma (DMG). H3K27Mmutant testing will occur as part of standard of care prior to enrollment.

COMPLETED
Evaluation of Functional Magnetic Resonance Imaging (fMRI) in Patients Who Speak Two Languages Fluently
Description

Functional magnetic resonance imaging (fMRI) is a non-invasive test used to detect changes in brain activity by taking picture of changes in blood flow. The imaging helps doctors better understand how the brain works. Task based fMRI (TB fMRI) prompts patients to perform different activities (e.g. word selection in a reading task), and is routinely performed on patients in preparation for a Neurological surgery (surgery that involves the nervous system, brain and/or spinal cord). The purpose is to locate areas of the brain that control speech and movement; these images will help make decisions about patient surgeries. However, there are however gaps in knowledge specific to the language areas of the brain, especially for non-English patients and bilingual patients (those who are fluent in more than one language). This study proposes to evaluate if resting state fMRI (RS fMRI) that does not require any tasks, along with a novel way to analyze these images using "graphy theory," may provide more information. Graph theory is a new mathematical method to analyze the fMRI data. The overall goal is to determine if graph theory analysis on RS fMRI may reduce differences in health care treatment and outcomes for non-English speaking and bilingual patients. We hope that the results of this study will allow doctors to perform pre-operative fMRI in patients who do not speak English.

RECRUITING
ONC206 for Treatment of Newly Diagnosed, Recurrent Diffuse Midline Gliomas, and Other Recurrent Malignant CNS Tumors
Description

This phase I trial studies the effects and best dose of ONC206 alone or in combination with radiation therapy in treating patients with diffuse midline gliomas that is newly diagnosed or has come back (recurrent) or other recurrent primary malignant CNS tumors. ONC206 is a recently discovered compound that may stop cancer cells from growing. This drug has been shown in laboratory experiments to kill brain tumor cells by causing a so called "stress response" in tumor cells. This stress response causes cancer cells to die, but without affecting normal cells. ONC206 alone or in combination with radiation therapy may be effective in treating newly diagnosed or recurrent diffuse midline gliomas and other recurrent primary malignant CNS tumors.

RECRUITING
A Study Comparing Abemaciclib Plus Temozolomide to Temozolomide Monotherapy in Children and Young Adults With High-grade Glioma Following Radiotherapy
Description

The purpose of this study is to measure the benefit of adding abemaciclib to the chemotherapy, temozolomide, for newly diagnosed high-grade glioma following radiotherapy. Your participation could last approximately 11 months and possibly longer depending upon how you and your tumor respond.

Conditions
WITHDRAWN
StrataXRT in Preventing Radiation Dermatitis in Pediatric Patients Undergoing Radiation Therapy to the Brain or Spinal Cord
Description

This phase I trial studies the side effects of a silicone topical wound dressing (StrataXRT) and to see how well it works in preventing radiation dermatitis (skin burns and side effects caused by radiation) in pediatric patients undergoing radiation therapy. StrataXRT may help prevent or decrease severe skin rash, pain, itching, skin peeling, and dry skin in pediatric patients undergoing radiation therapy to the brain or spinal cord.

COMPLETED
Vorinostat, Temozolomide, or Bevacizumab in Combination With Radiation Therapy Followed by Bevacizumab and Temozolomide in Young Patients With Newly Diagnosed High-Grade Glioma
Description

This randomized phase II/III trial is studying vorinostat, temozolomide, or bevacizumab to see how well they work compared with each other when given together with radiation therapy followed by bevacizumab and temozolomide in treating young patients with newly diagnosed high-grade glioma. Vorinostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Monoclonal antibodies, such as bevacizumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Radiation therapy uses high-energy x-rays to kill tumor cells. It is not yet known whether giving vorinostat is more effective then temozolomide or bevacizumab when given together with radiation therapy in treating glioma.

COMPLETED
Vorinostat and Temozolomide in Treating Young Patients With Relapsed or Refractory Primary Brain Tumors or Spinal Cord Tumors
Description

This phase I trial is studying the side effects and best dose of vorinostat when given together with temozolomide in treating young patients with relapsed or refractory primary brain tumors or spinal cord tumors. Vorinostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Vorinostat may help temozolomide work better by making tumor cells more sensitive to the drug.

COMPLETED
Tamoxifen, Carboplatin, and Topotecan in Treating Patients With CNS Metastases or Recurrent Brain or Spinal Cord Tumors
Description

RATIONALE: Drugs used in chemotherapy, such as carboplatin and topotecan, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Tamoxifen may help carboplatin work better by making tumor cells more sensitive to the drug. PURPOSE: This phase II trial is studying the side effects of giving carboplatin and topotecan together with tamoxifen and to see how well it works in treating patients with central nervous system metastases or recurrent brain or spinal cord tumors.

COMPLETED
Bevacizumab and Irinotecan in Treating Young Patients With Recurrent, Progressive, or Refractory Glioma, Medulloblastoma, Ependymoma, or Low Grade Glioma
Description

This phase II trial is studying how well giving bevacizumab together with irinotecan works in treating young patients with recurrent, progressive, or refractory glioma, medulloblastoma, ependymoma, or low grade glioma. Monoclonal antibodies, such as bevacizumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Bevacizumab may also stop the growth of glioma by blocking blood flow to the tumor. Drugs used in chemotherapy, such as irinotecan, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving bevacizumab together with irinotecan may kill more tumor cells.

UNKNOWN
Combination Chemotherapy and Radiation Therapy With or Without Methotrexate in Treating Young Patients With Newly Diagnosed Gliomas
Description

RATIONALE: Drugs used in chemotherapy work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more tumor cells. Radiation therapy uses high-energy x-rays to kill tumor cells. It is not yet known whether giving methotrexate together with combination chemotherapy and radiation therapy is more effective than combination chemotherapy and radiation therapy alone in treating gliomas. PURPOSE: This randomized phase III trial is studying giving methotrexate together with combination chemotherapy and radiation therapy to see how well it works compared to combination chemotherapy and radiation therapy alone in treating young patients with newly diagnosed gliomas.

COMPLETED
Erlotinib and Radiation Therapy in Treating Young Patients With Newly Diagnosed Glioma
Description

RATIONALE: Radiation therapy uses high-energy x-rays to kill tumor cells. Erlotinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor. It may also make tumor cells more sensitive to radiation therapy. Giving radiation therapy together with erlotinib may kill more tumor cells. PURPOSE: This phase I/II trial is studying the side effects and best dose of erlotinib when given together with radiation therapy and to see how well they work in treating young patients with newly diagnosed glioma.

COMPLETED
Radiation Therapy, Temozolomide, and Lomustine in Treating Young Patients With Newly Diagnosed Gliomas
Description

This phase II trial is studying how well giving radiation therapy together with temozolomide and lomustine works in treating young patients with newly diagnosed gliomas. Radiation therapy uses high energy x-rays to kill tumor cells. Drugs used in chemotherapy, such as temozolomide and lomustine, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving radiation therapy together with temozolomide and lomustine after surgery may kill any remaining tumor cells.

COMPLETED
Carboplatin, Vincristine, and Temozolomide in Treating Children With Progressive and/or Symptomatic Low-Grade Glioma
Description

RATIONALE: Drugs used in chemotherapy, such as carboplatin, vincristine, and temozolomide, work in different ways to stop tumor cells from dividing so they stop growing or die. Giving more than one drug may kill more tumor cells. PURPOSE: This pilot study is studying giving carboplatin and vincristine together with temozolomide in treating children with progressive and/or symptomatic low-grade glioma.

COMPLETED
Chemotherapy and Radiation Therapy After Surgery in Treating Children With Newly Diagnosed Astrocytoma, Glioblastoma Multiforme, Gliosarcoma, or Diffuse Intrinsic Pontine Glioma
Description

RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Radiation therapy uses high-energy x-rays to damage tumor cells. Giving chemotherapy together with radiation therapy may kill more tumor cells. PURPOSE: This phase II trial is studying how well giving chemotherapy together with radiation therapy after surgery followed by chemotherapy alone works in children with newly diagnosed astrocytoma, glioblastoma multiforme, gliosarcoma, or diffuse intrinsic pontine glioma.

COMPLETED
Natural History of Patients With Brain and Spinal Cord Tumors
Description

This study offers evaluation of patients with brain and spinal cord tumors. Its purpose is threefold: 1) to allow physicians in NIH s Neuro-Oncology Branch to increase their knowledge of the course of central nervous system tumors and identify areas that need further research; 2) to inform participants of new studies at the National Cancer Institute and other centers as they are developed; and 3) to provide patients consultation on possible treatment options. Children (at least 1 year old) and adults with primary malignant brain and spinal cord tumors may be eligible for this study. Participants will have a medical history, physical and neurological examinations and routine blood tests. They may also undergo one or more of the following procedures: * Magnetic resonance imaging (MRI) MRI is a diagnostic tool that uses a strong magnetic field and radio waves instead of X-rays to show detailed changes in brain structure and chemistry. For the procedure, the patient lies on a table in a narrow cylinder containing a magnetic field. A contrast material called gadolinium may be used (injected into a vein) to enhance the images. The procedure takes about an hour, and the patient can speak with a staff member via an intercom system at all times. * Computed axial tomography (CAT or CT) CT is a specialized form of X-ray imaging that produces 3-dimensional images of the brain in sections. The scanner is a ring device that surrounds the patient and contains a moveable X-ray source. The scan takes about 30 minutes and may be done with or without the use of a contrast dye. * Positron emission tomography (PET) PET is a diagnostic test that is based on differences in how cells take up and use glucose (sugar), one of the body s main fuels. The patient is given an injection of radioactive glucose. A special camera surrounding the patient detects the radiation emitted by the radioactive material and produces images that show how much glucose is being used by various tissues. Fast-growing cells, such as tumors, take up and use more glucose than normal cells do, and therefore, the scan might indicate the overall activity or aggressiveness of the tumor. The procedure takes about an hour. When all the tests are completed, the physician will discuss the results and potential treatment options with the patient. Follow-up will vary according to the individual. Some patients may end the study with just one visit to NIH, while others may be followed at NIH regularly, in conjunction with their local physicians. Patients with aggressive tumors may be seen every 3 or 4 months, while those with less active tumors may be seen every 6 to 12 months. Permission may be requested for telephone follow-up (with the patient or physician) of patients not seen regularly at NIH. ...

COMPLETED
Chemotherapy Plus Peripheral Stem Cell Transplantation in Treating Infants With Malignant Brain or Spinal Cord Tumors
Description

RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining chemotherapy with peripheral stem cell transplantation may allow the doctors to give higher doses of chemotherapy drugs and kill more tumor cells. PURPOSE: Phase I trial to study the effectiveness of combination chemotherapy plus peripheral stem cell transplantation in treating infants with malignant brain or spinal cord tumors.

TERMINATED
Gamma-Secretase Inhibitor RO4929097 in Treating Young Patients With Relapsed or Refractory Solid Tumors, CNS Tumors, Lymphoma, or T-Cell Leukemia
Description

This phase I/II clinical trial is studying the side effects and best dose of gamma-secretase inhibitor RO4929097 and to see how well it works in treating young patients with relapsed or refractory solid tumors, CNS tumors, lymphoma, or T-cell leukemia. Gamma-secretase inhibitor RO4929097 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

Conditions
Childhood Atypical Teratoid/Rhabdoid TumorChildhood Central Nervous System ChoriocarcinomaChildhood Central Nervous System GerminomaChildhood Central Nervous System Mixed Germ Cell TumorChildhood Central Nervous System TeratomaChildhood Central Nervous System Yolk Sac TumorChildhood Choroid Plexus TumorChildhood CraniopharyngiomaChildhood EpendymoblastomaChildhood Grade I MeningiomaChildhood Grade II MeningiomaChildhood Grade III MeningiomaChildhood Infratentorial EpendymomaChildhood MedulloepitheliomaChildhood Mixed GliomaChildhood OligodendrogliomaChildhood Supratentorial EpendymomaGonadotroph AdenomaPituitary Basophilic AdenomaPituitary Chromophobe AdenomaPituitary Eosinophilic AdenomaProlactin Secreting AdenomaRecurrent Childhood Acute Lymphoblastic LeukemiaRecurrent Childhood Anaplastic Large Cell LymphomaRecurrent Childhood Brain Stem GliomaRecurrent Childhood Central Nervous System Embryonal TumorRecurrent Childhood Cerebellar AstrocytomaRecurrent Childhood Cerebral AstrocytomaRecurrent Childhood EpendymomaRecurrent Childhood Grade III Lymphomatoid GranulomatosisRecurrent Childhood Large Cell LymphomaRecurrent Childhood Lymphoblastic LymphomaRecurrent Childhood MedulloblastomaRecurrent Childhood PineoblastomaRecurrent Childhood Small Noncleaved Cell LymphomaRecurrent Childhood Spinal Cord NeoplasmRecurrent Childhood Subependymal Giant Cell AstrocytomaRecurrent Childhood Supratentorial Primitive Neuroectodermal TumorRecurrent Childhood Visual Pathway and Hypothalamic GliomaRecurrent Childhood Visual Pathway GliomaRecurrent Pituitary TumorRecurrent/Refractory Childhood Hodgkin LymphomaT-cell Childhood Acute Lymphoblastic LeukemiaT-cell Large Granular Lymphocyte LeukemiaTSH Secreting AdenomaUnspecified Childhood Solid Tumor, Protocol Specific
COMPLETED
ABT-888 and Temozolomide in Treating Young Patients With Recurrent or Refractory CNS Tumors
Description

This phase I trial is studying the side effects and best dose of ABT-888 when given in combination with temozolomide in treating young patients with recurrent or refractory CNS tumors. ABT-888 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving ABT-888 together with temozolomide may kill more tumor cells.

ACTIVE_NOT_RECRUITING
A Study Evaluating the Safety and Efficacy of ENV-101 (Taladegib) in Patients With Advanced Solid Tumors Harboring PTCH1 Loss of Function Mutations
Description

This study employs a 2-stage design that aims to evaluate the efficacy and safety of ENV- 101, a potent Hedgehog (Hh) pathway inhibitor, in patients with refractory advanced solid tumors characterized by loss of function (LOF) mutations in the Patched-1 (PTCH1) gene. Stage 1 of this study will enroll approximately 44 patients randomized between two dose levels. As appropriate, Stage 2 of the study will expand enrollment based on the results of Stage 1.

ACTIVE_NOT_RECRUITING
Trial of Anti-PD-1 Immunotherapy and Stereotactic Radiation in Patients With Recurrent Glioblastoma
Description

The purpose of this study is to assess the safety/tolerability/feasibility of pembrolizumab and radiation therapy before surgical resection in patients with recurrent glioblastoma as defined by treatment-related AEs and the number of patients who do not necessitate a delay in surgical resection, and to assess overall survival. The secondary objectives are to assess progression free survival, and to assess the T cell clonality, CD8 T cell activation and Tumor Infiltrating Lymphocyte (TIL) score after treatment

RECRUITING
Fluorescence Detection of Adult Primary Central Nervous System Tumors With Tozuleristide and the Canvas System
Description

The purpose of this study is to examine the use of a single dose of tozuleristide (24 or 36 mg) and the Canvas imaging system during surgical resection of primary central nervous system (CNS) tumors: Primary gadolinium enhancing (high grade) CNS tumors, primary non-gadolinium enhancing CNS tumors, and primary vestibular schwannoma. The primary objectives of the study is to see how well tozuleristide and the Canvas imaging system during surgical resection will show fluorescence among primary enhancing/high grade CNS tumors; and among the tumors that demonstrate tozuleristide fluorescence, to estimate the true positive rate and true negative rate of fluorescence in tissue biopsies, as well as sensitivity and specificity of tozuleristide fluorescence for distinguishing tumor from non-tumoral tissue. The secondary objectives of the study include evaluating the safety of tozuleristide and the Canvas imaging system, and to determine if the presence of remaining fluorescence at the time of surgery corresponds to remaining tumor evident on post-operative MRI images, or if the absence of fluorescence corresponds to evidence of no gross residual tumor on post-operative magnetic resonance imaging (MRI).

COMPLETED
PTC299 in Treating Young Patients With Refractory or Recurrent Primary Central Nervous System Tumors
Description

RATIONALE: PTC299 may stop the growth of tumor cells by blocking blood flow to the tumor. PURPOSE: This phase I trial is studying the side effects and the best dose of PTC299 in treating young patients with recurrent or refractory primary central nervous system tumors.

TERMINATED
MK0752 in Treating Young Patients With Recurrent or Refractory CNS Cancer
Description

RATIONALE: MK0752 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. PURPOSE: This phase I trial is studying the side effects and best dose of MK0752 in treating young patients with recurrent or refractory CNS cancer.

COMPLETED
Donepezil in Treating Young Patients With Primary Brain Tumors Previously Treated With Radiation Therapy to the Brain
Description

RATIONALE: Donepezil may decrease the side effects caused by radiation therapy to the brain. PURPOSE: This clinical trial is studying how well donepezil works in treating young patients with primary brain tumors previously treated with radiation therapy to the brain.

COMPLETED
Valproic Acid in Treating Young Patients With Recurrent or Refractory Solid Tumors or CNS Tumors
Description

RATIONALE: Drugs used in chemotherapy, such as valproic acid, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Valproic acid may also stop the growth of solid tumors or CNS tumors by blocking blood flow to the tumor. PURPOSE: This phase I trial is studying the side effects and best dose of valproic acid in treating patients with recurrent or refractory solid tumors or CNS tumors.

COMPLETED
Cyproheptadine and Megestrol in Preventing Weight Loss in Children With Cachexia Caused By Cancer or Cancer Treatment
Description

RATIONALE: Cyproheptadine and megestrol may improve appetite and help prevent weight loss in children with cancer. PURPOSE: This phase II trial is studying how well cyproheptadine and megestrol work in improving appetite and preventing weight loss in children with cachexia caused by cancer or cancer treatment.

COMPLETED
SCH 66336 in Treating Children With Recurrent or Progressive Brain Tumors
Description

RATIONALE: SCH 66336 may stop the growth of tumor cells by blocking the enzymes necessary for cancer cell growth. PURPOSE: This phase I trial is studying the side effects and best dose of SCH 66336 in treating children with recurrent or progressive brain tumors.