38 Clinical Trials for Various Conditions
This study will investigate the association between clonal hematopoiesis and other conditions. Clonal hematopoiesis (CH) refers to the mutations in a person's stem cells which commonly affect people as they get older. These mutations have notably been linked to increased risk of certain cancers as well as increased risk of heart disease.
The primary goal of this clinical trial is to test the hypothesis that the drug canakinumab (anti-IL-1B monoclonal antibody) decreases vascular inflammation when used by people with a history of coronary artery disease, including those with and without clonal hematopoiesis driven by mutations in TET2.
This study evaluates hematopoiesis to determine how MBL/CLL affected bone marrow responds to fight off infections in the body.
BMT CTN 2207 will investigate the use of marrow transplantation for treatment of severe aplastic anemia that has not previously been treated.
This study is being done to investigate clonal hematopoiesis and therapy-emergent myeloid neoplasms in patients with ovarian or other solid cancers. Researchers want to identify risk factors for developing these blood cancers as well as if there is/are a genetic/environmental component(s) to developing blood cancer.
This Phase 2a clinical trial will evaluate the effectiveness, safety, and tolerability of increasing dose strengths of an oral daily medication, DFV890, administered for 12 weeks, or a single s.c. dose of MAS825, to reduce key markers of inflammation related to CVD risk, such as IL-6 and IL-18, in approximately 28 people with known coronary heart disease and TET2 or DNMT3A CHIP (VAF ≥2%).
Project 3 of the PPG grant "Stress and Atherosclerotic Plaque Macrophages A Systems Biology Approach," funded by the NHLBI, examines the relationship between psychosocial stress and atherosclerotic inflammation, cell proliferation and burden using novel PET/MRI. Individuals with post-traumatic stress disorder, trauma controls and healthy controls will be recruited into a two-center clinical study. The study team will use functional MRI to examine the relationship between activation of fear circuits in the brain and relate these data to hematopoietic system activation, and vascular inflammation measured by FDG-PET, and atherosclerotic burden measured by MRI.
In this study the investigators will incorporate a wide range of clinical variables associated with aging and cardiovascular disease to determine whether they are associated with mutation status independent of chronologic age. Clinically, aging can be operationalized using geriatric assessment, which entails a comprehensive multi-dimensional assessment of the health of an older adult, including measures of comorbidity, polypharmacy, functional status, cognition, depression, falls, social activities and social support. Given that aging is heterogeneous, geriatric assessment allows greater specificity for aging than chronological age alone.
Researchers from Memorial Sloan-Kettering Cancer Center, in collaboration with The New York Presbyterian Hospital-Weill Medical College of Cornell University, are conducting a study of a medicinal mushroom extract called Maitake (pronounced my-tock-e). Laboratory studies show that Maitake can reduce the growth of cancer in animals. The Maitake does not kill cancer cells directly. It is believed to work through the immune system (the body's defense system against infection). Our test tube, animal and human dose determining studies show that Maitake can enhance immune function. We are conducting this study to see whether Maitake improves the neutrophil count and function in patients with MDS. The neutrophils are white blood cells which help to fight infection.
The purpose of the study is to evaluate if firefighter exposure to hazardous compounds will increase the incidence of premalignant hematological states which subsequently increases the risk of the development of hematologic malignancies, and potentially other pathophysiological consequences.
Background: Clonal Hematopoiesis of Indeterminate Potential (CHIP) is a change in a person s DNA that can increase a person s risk of developing blood cancers or cardiovascular disease. CHIP occurs mostly occurs in older people. Clonal cytopenia of undetermined significance (CCUS) occurs when one or more blood cell types is lower than it should be and is associated with a change in their DNA. Researchers want to learn more about how CHIP and CCUS progress. Objective: To examine the natural history of people in a study of CHIP and CCUS to (1) verify the association of myeloid somatic mutations with atherosclerosis and blood cancers, and (2) find new potential clinical associations. Eligibility: Adults 18 and older with CHIP with a somatic pathogenic variant associated with blood cancers. Adults with CCUS are also needed. Design: Potential participants will be screened with gene testing. For this, they will give a blood sample. They will also be enrolled in NHLBI screening protocol #97-H-0041. Those who pass this screening will visit the NIH Clinical Center for more screening tests. For this, they will give a blood sample. They will have a physical exam. They will give their medical history. They may give a urine sample. Those with CCUS will have bone marrow taken. Eligible participants will give blood and urine samples. Their heart activity will be monitored and tested. The arteries in their neck will be assessed using ultrasound. They will have liver and heart scans. They will have a bone mineral density scan. They will have lung function tests. They will have the inside of their cheek swabbed or have a skin punch biopsy. They will have the option to have advanced scans done of their heart and full body but this is not required. Participants will have yearly follow-up visits for 10 years. They will repeat the above procedures every 1-3 years depending on the procedure.
Individuals who experience traumatic injury often require blood transfusion. In some individuals who receive blood after an injury, white blood cells from a person who donated blood may remain in the body for years, a condition known as microchimerism. This study is designed to examine a group of people who are known to have long-term microchimerism and, through analysis of their blood, determine whether there is evidence that the microchimerism involves blood stem cells that can become any type of blood cell (red blood cells, white blood cells, or platelets) and that might be a permanent part of the body.
This study assesses how blood cell growth patterns (clonal hematopoiesis), relates to heart health or cardiovascular disease (CVD) after treatment in patients with Hodgkin lymphoma. In some patients, cancer treatment at a young age may lead to later complications, including problems with heart health. Checking for blood cell growth patterns called therapy-related clonal hematopoiesis (t-CH) can help predict who might be at risk for heart health problems after Hodgkin lymphoma treatment. If doctors know who may be at greater risk for developing later heart complications, then they can more closely monitor those patients to prevent or detect heart complications early.
The purpose of this research study is to learn more about variants in the TP53 gene both associated with Li-Fraumeni Syndrome (LFS), a hereditary cancer risk condition, and TP53 variants found in the blood for other reasons (e.g. ACE/CHIP and mosaicism).
This clinical trial tests next generation sequencing (NGS) for the detection of precursor features of pre-myeloid cancers and bone marrow failure syndromes. NGS is a procedure that looks at relevant cancer associated genes and what they do. Finding genetic markers for pre-malignant conditions may help identify patients who are at risk of pre-myeloid cancers and bone marrow failure syndromes and lead to earlier intervention.
Background: Severe aplastic anemia (SAA) is a rare and serious blood disorder. It causes the immune system to turn against bone marrow cells. Standard treatment for SSA is a combination of 3 drugs (Cyclosporine \[CsA\], Eltrombopag \[EPAG\], and horse anti-thymocyte globulin \[h-ATG\]). Researchers want to see if starting people at a lower dose of CsA with EPAG before giving them h-ATG is helpful. Objective: To learn if early initiation of oral therapy with CsA and EPAG is safe and effective in people who have SAA and have not been treated with a course of immunosuppressive therapy and EPAG. Eligibility: People ages 3 and older with SAA Design: Participants will be screened with: medical history physical exam electrocardiogram blood tests family history bone marrow biopsy current medicines. Participants may be screened remotely via telephone conference. Participants will take a lower oral dose of CsA and EPAG. They will take CsA twice a day for 6 months. They will take EPAG for 6 months. Those who cannot visit the NIH Clinical Center within 72 hours will start taking the drugs at home. They will have weekly telephone calls with NIH staff until they visit the Clinical Center. Participants may get h-ATG at the Clinical Center for 4 days. For this, they will have a central line placed. It is a plastic tube inserted into a neck, chest, or arm vein. Participants will repeat most screening tests throughout the study. Participants will have follow-up visits at the Clinical Center at 3 months, 6 months, and annually for 5 years after the start of the study....
Background: Fanconi anemia is a genetic disease. Some people with it have reduced blood cell counts. This means their bone marrow no longer works properly. These people may need blood transfusions for anemia (low red blood cells) or low platelet counts or bleeding. Researchers want to see if a new drug will help people with this disease. Objective: To find out if a new drug, eltrombopag, is effective in people with Fanconi anemia. To know how long the drug needs to be given to improve blood counts. Eligibility: People at least 6 years old with Fanconi anemia with reduced blood cell counts. Design: Participants will be screened with blood and urine tests. They will repeat this before starting to take the study drug. Participants will take eltrombopag pills by mouth once a day for 24 weeks. They will be monitored closely for side effects. Participants will have blood tests every 2 weeks while on eltrombopag. Participants will visit NIH 3 months and 6 months after starting eltrombopag. At these visits, participants will: Answer questions about their medical history, how they are feeling, and their quality of life Have a physical exam Have blood and urine tests Have a bone marrow sample taken by needle from the hip. The area will be numbed. If participants blood cell counts improve, they might join the extended access part of the study. They will continue taking eltrombopag for 3 years and sign a different consent. After 24 weeks of treatment, if there is no improvement in blood cell counts, participants will stop taking eltrombopag. They will return for an optional follow-up visit that repeats the study visits....
Background: - Eltrombopag is a drug being tested for treating severe aplastic anemia. It can help improve blood counts in these patients. However, researchers do not know how long the drug can and should be taken for this type of anemia. Objectives: - To look at whether 6 months of treatment with eltrombopag can improve patient s blood counts. Eligibility: - Individuals at least 2 years of age who are taking eltrombopag for severe aplastic anemia. Design: * Participants will take eltrombopag by mouth once a day for 6 months. * Blood samples will be collected every 2 weeks for the first 6 months. Bone marrow samples will be collected at 3 and 6 months. These samples will look at the effects of the study drug on the marrow. * Participants will continue to take the study drug for as long as it is effective and if the side effects are not severe.
Background: * Moderate aplastic anemia is a blood disease which may require frequent blood and platelet transfusions. Sometimes patients with this disease can be treated with immunosuppressive drugs. Not all patients respond and not all patients are suitable for this treatment. * Thrombopoietin (TPO) is a protein made by the body. The bone marrow needs TPO to produce platelets. TPO may also be able to stimulate bone marrow stem cells to produce red cells and white cells. However, TPO cannot be given by mouth. This has led researchers to develop the drug eltrombopag, which acts in the same way and can be given by mouth. Eltrombopag has been shown to safely increase platelet numbers in healthy volunteers and in patients with other chronic blood diseases, including severe aplastic anemia. Researchers are interested in looking at whether eltrombopag can be given to people with moderate aplastic anemia and significantly low blood cell counts. Objectives: - To evaluate the safety and effectiveness of eltrombopag in people with moderate aplastic anemia or patients with bone marrow failure and unilineage cytopenia who need treatment for significantly low blood cell counts. Eligibility: - People at least 2 years of age who have moderate aplastic anemia or bone marrow failure and unilineage cytopenia,and significantly low blood cell counts. Design: * Patients will be screened with a physical examination, medical history, blood tests, a bone marrow biopsy, and an eye exam. * Patients will receive eltrombopag by mouth once a day. * Patients will have weekly blood tests to monitor the effectiveness of the treatment and adjust the dose in response to possible side effects. * Patients may continue to take eltrombopag if their platelet count or hemoglobin increases, their requirement for platelet or blood transfusion decreases after 16 to 20 weeks of treatment, and there have been no serious side effects. Access to the drug will continue until the study is closed. Patients will be asked to return for a follow-up visit 6 months after the last dose of medication.
Background: * Severe aplastic anemia (SAA) can lead to problems with bone marrow health and result in low blood cell counts, which require frequent transfusions. Standard treatment for SAA involves injections of antithymocyte globulin (ATG) plus cyclosporine (CsA). This regimen has been shown to improve the blood counts in about two-thirds of patients. However, the ATG/CsA regimen has the following limitations: (a) the disease can come back (relapse) in about one-third of patients who improve initially; and (b) in about 10% to 15% of cases, certain types of bone marrow cancer (such as myelodysplasia and leukemia) can develop (called evolution). Experience with other drugs in SAA such as cyclophosphamide suggests that similar response rates to ATG/CsA can be achieved with a lower risk of relapse and clonal evolution. However, cyclophosphamide was found to have significant side effects in SAA when investigated over 10 years ago due to increase risk of fungal infections. * Better antibiotic drugs against fungus have been developed and are widely used to treat patients who have low white blood cell counts and are at risk of developing infections. In SAA patients in particular, these newer antibiotics have had a large impact in preventing and treating fungus infections. Researchers are revisiting the use of cyclophosphamide in SAA treatment, and plan to give a lower dose of CsA in combination with the immune-suppressing drug cyclophosphamide, as well as antibiotics to protect against infections, as a possible treatment for the disease. Objectives: - To determine the safety and effectiveness of the combination of cyclophosphamide and cyclosporine in treating severe aplastic anemia that has not been treated with immunosuppressive therapy.
Background: * Myelodysplastic syndromes (MDS) are bone marrow disorders characterized by anemia, neutropenia, and thrombocytopenia (low red blood cell, white blood cell, and platelet counts). Patients with MDS are at risk for symptomatic anemia, infection, and bleeding, as well as a risk of progression to acute leukemia. Standard treatments for MDS have significant relapse rates. MDS patients with thrombocytopenia who fail standard therapies require regular, expensive, and inconvenient platelet transfusions, and are at risk for further serious bleeding complications. * Eltrombopag is a drug designed to mimic the protein thrombopoietin, which causes the body to make more platelets. Eltrombopag has been able to increase platelet counts in healthy volunteers and in patients with chronic ITP (a disease where patients destroy their own platelets very rapidly and thus develop thrombocytopenia), but researchers do not know if the drug can increase platelet counts in patients with MDS. Objectives: * To find out whether eltrombopag can improve platelet counts in patients with MDS. * To determine whether eltrombopag is safe for patients with MDS. Eligibility: * Patients 18 years of age and older who have consistently low blood platelet counts related to MDS that has not responded to conventional treatment. * Platelet count ≤ 30,000/μL or platelet-transfusion-dependence (requiring at least 4 platelet transfusions in the 8 weeks prior to study entry); OR hemoglobin less than 9.0 gr/dL or red cell transfusion-dependence (requiring at least 4 units of PRBCs in the eight weeks prior to study entry) OR ANC≤500 Design: * Treatment with eltrombopag tablets once per day for 16-20 weeks. * Participants will be monitored closely throughout the initial treatment, with weekly blood tests and separate evaluations at the National Institutes of Health (NIH) treatment center every 4 weeks. Bone marrow biopsies may be conducted to check for abnormalities in bone marrow. * If patients show signs of improved platelet counts after 90 days, treatment will continue with additional doses of eltrombopag. * Patients who discontinue taking eltrombopag will be evaluated at the NIH treatment center 4 weeks after ending treatment, and again 6 months after ending treatment to check for potential side effects.
Severe aplastic anemia (SAA) is a life-threatening bone marrow failure disorder characterized by pancytopenia and a hypocellular bone marrow. Allogeneic bone marrow transplantation offers the opportunity for cure in 70% of patients, but most patients are not suitable candidates for hematopoietic stem cell transplantation (HSCT) due to advanced age or lack of a histocompatible donor. For these patients, comparable long term survival is attainable with immunosuppressive treatment with anti-thymocyte globulin (ATG) and cyclosporine (CsA). However, of those patients treated with horse ATG(h-ATG)/CsA, one quarter to one third will not respond, and about 50% of responders relapse. Auto-reactive T cells may be resistant to the effect of ATG/CsA (non-responders), while in others residual auto-reactive T cells expand post-treatment, leading to hematopoietic stem cell destruction and recurrent pancytopenia (relapse). As long term survival is correlated to response rates and robustness of hematopoietic recovery, novel immunosuppressive regimens that can achieve hematologic response and decrease relapse rates are needed. This trial will compare the effectiveness of three immunosuppressive regimens as first line therapies in patients with SAA with early hematologic response as the primary endpoint, as well as assess the role of extended CsA treatment after h-ATG in reducing numbers of late events of relapse and clonal evolution. Randomization is employed to obtain an equal distribution of subject to each arm; comparisons of early hematologic responses will be made among the rates observed among the three concurrent arms (rabbit-ATG \[r-ATG\] versus standard h-ATG; alemtuzumab vs standard h-ATG). For long course CSA, comparison of primary end points will be to well established historic relapse rate of 38% at 2-3 years and a cumulative rate of clonal evolution of 15%.
This study will test whether the immune-suppressing drug rituximab can increase blood counts and reduce the need for transfusions in patients with moderate aplastic anemia, pure red cell aplasia, or Diamond Blackfan anemia. These are rare and serious blood disorders in which the immune system turns against bone marrow cells, causing the bone marrow to stop producing red blood cells in patients with pure red cell aplasia and Diamond Blackfan anemia, and red blood cells, white blood cells and platelets in patients with aplastic anemia. Rituximab is a laboratory-made monoclonal antibody that recognizes and destroys white blood cells called lymphocytes that are responsible for destroying bone marrow cells in these diseases. The drug is currently approved by the Food and Drug Administration for treating patients with B-cell non-Hodgkin lymphoma, a disease of white blood cells.
This study will evaluate the safety and effectiveness of a genetically engineered antibody, alemtuzumab (Campath\[R\]) on patients with myelodysplastic syndrome. MDS is made up of malignant stem cell disorders that can mean low levels of red blood cells-that is, anemia-and low counts of white blood cells and platelets. Patients with MDS are at risk for infection, spontaneous bleeding, and possible progression to leukemia, a cancer of bone marrow. Although bone marrow can produce some blood cells, patients with MDS experience a decrease in production of blood cells. Alemtuzumab recognizes specific types of white cells called lymphocytes and destroys them. This study will examine not only the usefulness of the medication but also the side effects in patients with MDS. Patients ages 18 to 72 who have MDS that requires transfusions and who do not have HIV or a life expectancy of less than 6 months may be eligible for this study. Screening tests include a complete physical examination and medical history. There will be a collection of about 8 tablespoons of blood for analysis of blood counts as well as liver, kidney, and thyroid function; a pregnancy test; an electrocardiogram (EKG) to measure electrical activity of the heartbeat; an echocardiogram (ECHO), which uses sound waves to evaluate heart function; wearing of a Holter monitor for 24 hours while the electrical activity of the heart is recorded; and a bone marrow biopsy. Patients should not receive any vaccines when taking alemtuzumab or for at least 12 months after the last dose. In addition, patients should not take the herbal supplements Echinacea purpurea or Usnea 2 weeks before beginning the study and during it. For the study, all patients will receive a test dose of 1 mg of alemtuzumab infused into a vein during the course of 1 hour. If the dose is tolerated, the medication will be given at 10 mg doses into the vein for 10 days, as an infusion of 2 hours. Blood samples of 2 tablespoons will be taken daily, and vital signs will be measured daily. The ECHO and 24-hour Holter monitoring will be repeated after patients receive the last dose of the medication. Because suppression of the immune system results from a decrease in white cells that fight infections, patients will take medications to protect them against infections and to treat them if infections occur. If needed, patients will receive blood transfusions for their MDS. Side effects of alemtuzumab involve a temporarily significant lowering of the number of red blood cells, white cells, and platelets. Side effects of the infusion can be rigidity, or stiffness, and fever, as well as risks of infections resulting from the decrease of white blood cells. Blood counts and reactions to all procedures will be carefully monitored throughout the study. After patients receive the last dose of alemtuzumab, they will have follow-up by their referring doctor or at NIH. They must be able to return to NIH after 1 month, 3 months, 6 months, and annually for 5 years after the study. At follow-up visits, there will be blood tests to reevaluate blood counts and test for the presence of viruses. Blood tests will be done weekly for the first 3 months after patients have completed taking alemtuzumab, every other week until 6 months, and then annually for 5 years. There will also be a repeat ECHO at the 3-month visit, and a repeat bone marrow biopsy at the 5-month and 12-month follow-up visits, and as needed after that. This study may or may not have a direct benefit for participants. For some, the antibody may improve blood counts and decrease the need for transfusions. Knowledge gained in the study may help people in the future.
This study will evaluate the safety and usefulness of a new immunosuppressive drug, alemtuzumab (Campath ), in patients with severe aplastic anemia (SAA). SAA is a rare and serious blood disorder in which the bone marrow stops making red blood cells, white blood cells and platelets. Alemtuzumab is a monoclonal antibody that attaches to and kills white blood cells called lymphocytes. In certain types of aplastic anemia, lymphocytes are responsible for the destruction of stem cells in the bone marrow, leading to a decrease in blood counts. Because alemtuzumab destroys lymphocytes, it may be effective in treating aplastic anemia. Alemtuzumab is currently approved to treat chronic lymphocytic leukemia and is also helpful in other conditions that require immunosuppression, such as rheumatoid arthritis and immune cytopenias. Patients 2 years of age and older with severe aplastic anemia whose disease does not respond to immunosuppressive therapy or has recurred following immunosuppressive therapy may be eligible for this study. Participants undergo the following tests and procedures: * Pretreatment evaluation: Patients have a medical history, physical examination, blood tests, electrocardiogram (EKG), echocardiogram, 24-hour Holter monitor (continuous 24-hour monitoring of electrical activity of the heart), bone marrow biopsy (withdrawal through a needle of a small sample of bone marrow for analysis). * Placement of a central line, if needed: An intravenous line (tube) is placed into a major vein in the patient's chest. It can stay in the body for the entire treatment period and be used to give chemotherapy or other medications, including antibiotics and blood transfusions, if needed, and to withdraw blood samples. * Alemtuzumab therapy: Patients are admitted to the NIH Clinical Center for the first few injections for close monitoring of side effects. After receiving an initial small test dose, patients begin the first of ten daily injections under the skin, each lasting about 2 hours. Once patients tolerate the infusions with minimal or no side effects, they may be given the remaining infusions on an outpatient basis. Patients who relapse after their initial response to alemtuzumab are given cyclosporine to see if this drug will boost their immune response. * Patients receive transfusions, growth factors, and antibiotic therapy, as needed. * Infection therapy: Patients are given aerosolized pentamidine to protect against lung infections and valacyclovir to protect against herpes infections. * A blood test is done and vital signs are measured every day while patients receive alemtuzumab. * Patients have an echocardiogram and 24-hour Holter monitor after the last dose of alemtuzumab. * Blood tests are done weekly for the first 3 months after alemtuzumab administration, then every other week until 6 months. Patients return to the NIH for follow-up visits 1 month, 3 months, 6 months, and yearly for 5 years after the last dose of alemtuzumab for the following tests and evaluations: * Blood test * Repeat echocardiogram at 3-month visit * Repeat bone marrow biopsy 6 months and 12 months after alemtuzumab, then as clinically indicated for 5 years.
This two-part study will determine whether stem cells (primitive cells produced by the bone marrow that can develop into blood cells or other types of cells) can be pushed out into the bloodstream, relocate in the heart, and grow new heart muscle and blood vessels in patients with chest pain caused by narrowing of their coronary (heart) arteries. The new blood vessels may enable patients to do more activities before experiencing chest pain. Part 1 of the study will evaluate in a small number of patients whether an increase in white blood cells following administration of G-CSF (a drug used to move stem cells from the bone marrow to the bloodstream) is safe in people with coronary heart disease. Part 2 will evaluate the effects of the circulating stem cells on heart function. Patients 21 years of age and older with coronary artery blockage that limits blood flow to the heart (as shown by coronary angiography within 6 months of entering the study) and causes chest pain that interferes with the ability to carry out daily living activities may be eligible for this study. Candidates will be screened with blood tests, an exercise test, magnetic resonance imaging (MRI), and 24-hour Holter monitoring of heart rate and rhythm. Participants will undergo the following tests and procedures: Part 1: Patients will be hospitalized at the NIH Clinical Center for 5 days. On the first day after admission, an indwelling catheter (short plastic tube) will be placed in an arm vein to avoid multiple needle sticks for blood sampling. Patients will then exercise on a treadmill. Blood samples will be drawn before the exercise test and 2 hours after the test. The next 2 days, patients will receive a daily injection of G-CSF under the skin. Blood samples will be drawn every day for 5 days to monitor the effect of G-CSF on moving cells into the bloodstream. Additional samples will be drawn to determine the effects of G-CSF on the number of stem cells that become heart cells, as well as any effects on blood clotting ability. After discharge for the hospital, patients will return to the clinic 2 weeks after the initiation of G-CSF treatment for a physical examination, blood tests, and a treadmill exercise test. One month after the initiation of treatment, patients will return to the clinic for a physical examination, blood tests, treadmill exercise test, an MRI study, and fitting with a Holter monitor for 24-hour heart monitoring. Part 2: Patients will be hospitalized at the NIH Clinical Center for 5 days, undergoing the same procedures as in Part 1, except they will receive G-CSF for 5 days instead of 2. They will also undergo the same procedures detailed for the 2-week and 1-month follow-up visits. Then, at 3 months they will again return to the clinic for a physical examination, routine blood tests, and a treadmill exercise test. This concludes formal participation in the study. However, patients are requested to return to the outpatient clinic once a year for follow-up.
This is a study to determine the response rate in patients with myelodysplastic syndromes treated with calcitriol and dexamethasone.
This study will examine the safety and effectiveness of a new drug combination for treating patients with severe aplastic anemia. Patients with aplastic anemia produce too few blood cells, causing fatigue, easy bruising and bleeding, and susceptibility to infections. In many cases, the very low blood counts result from an autoimmune process-that is, the patient's own immune system suppresses production of blood cells by the bone marrow. Although immune-suppressing drugs, such as cyclosporine, can restore normal cell counts, many patients have disease relapses. These patients require long-term therapy with cyclosporine, which can cause harmful side effects. This study will examine whether a lower dose of cyclosporine given together with mycophenolate mofetil (MMF) can maintain blood counts as effectively as full-dose cyclosporine treatment, and whether MMF alone can reduce the chances of future relapses. Patients 4 years of age and older with severe aplastic anemia who have relapsed after immune suppressing therapy may be eligible for this study. Participants will be randomly assigned to receive either standard cyclosporine therapy or experimental therapy with cyclosporine and MMF. Patients receiving standard cyclosporine therapy will receive a full dose of the drug for at least 3 months. Those taking both cyclosporine and MMF will take MMF plus half-dose cyclosporine for 3 months and continue MMF for an additional 6 months. Both drugs are taken twice a day by mouth. All patients will have about 120 milliliters (4 ounces) of blood drawn at the beginning of the study to evaluate immune system activity and bone marrow function, and to look for genetic material of certain viruses. Bone marrow aspirations and biopsies will be done at the beginning of the study, and at 6 and 12 months. For these tests, the area of the hip is anesthetized and a special needle is used to draw bone marrow from the hipbone. The patient's local doctor will be asked to do blood tests for chemistries, liver function and cyclosporine levels weekly for the first month and then every other week. Patients will return to NIH for evaluations 3, 6 and 12 months after treatment and then once a year. About 100 ml (7 tablespoons) of blood will be drawn at each visit.
This study will test the safety and effectiveness of a combination of three drugs in treating severe aplastic anemia and preventing its recurrence. Two drugs used in this trial ATG and cyclosporine are standard combination therapy for aplastic anemia. This study will try to improve this therapy in three ways: 1) by altering the drug regimen to allow the drugs to work better; 2) by reducing the risk of kidney damage; and 3) by adding a third drug mycophenolate mofetil to try to prevent disease relapse. Patients with severe aplastic anemia who do not have a suitable bone marrow donor or who decline bone marrow transplantation may participate in this study. Patients will have a skin test for ATG allergy, chest X-ray, blood test, and bone marrow aspiration before treatment begins. ATG will then be started, infused through a vein continuously for 4 days. Ten days after ATG is stopped, cyclosporine treatment will begin, taken twice a day by mouth in either liquid or capsule form and will continue for 6 months. Also, in the first 2 weeks of treatment, patients will be given a full dose of corticosteroid (prednisone) to prevent serum sickness that could develop as a side effect of ATG therapy. The dosage will be decreased after that. Mycophenolate will be started at the same time as ATG, in two daily doses by mouth, and will continue for 18 months. Patients will be hospitalized at the beginning of the study. During this time, blood will be drawn at 3-week intervals and a bone marrow examination will be repeated 3 months after treatment has begun. Additional tests, including X-rays may be required. After hospital discharge, patients will be followed on an outpatient basis at 3-month intervals. The patients own physician will perform blood tests weekly and kidney and liver function tests every 2 weeks during cyclosporine therapy. Transfusions may be required initially.
Participants in this study are suffering from rare and serious blood disorders. In aplastic anemia, the bone marrow stops producing red blood cells, platelets, and white blood cells. In pure red cell aplasia, the bone marrow stops producing red cells, and in amegakaryocytic thrombocytopenic purpura, the bone marrow stops producing platelets. Current treatment approaches for these disorders include bone marrow transplant and/or immunosuppression. However, bone marrow transplant is not always possible, and immunosuppression has serious side effects. This study will investigate whether daclizumab can be used to treat these disorders. Daclizumab is a genetically engineered human antibody that blocks the interleukin-2 receptor on immune cells. It has been used successfully in many transplant patients to reduce the rate of organ rejection. Participants will undergo a complete history and physical examination. A bone marrow aspiration and biopsy will be performed to confirm the type of bone marrow failure. About 5 tablespoons of blood will be drawn for baseline tests and research purposes. Daclizumab will be administered every 2 weeks by vein in a 30-minute infusion. The first dose will be given at NIH and the next four may be given at NIH or by the participant's primary hematologist. The treatment will last 8 weeks. Participants must also see their referring physician or NIH physicians every 2 weeks for blood counts. In the fourth and eighth weeks of the study and at the 3-month follow-up visit, 2 tablespoons of blood will be drawn at NIH. At the 1-month follow-up visit to NIH, 5 tablespoons of blood will be drawn and another bone marrow aspiration and biopsy performed. Risks from bone marrow aspiration and biopsy and blood draws include discomfort. Daclizumab is usually well-tolerated; however, it may weaken immunity against certain bacteria and viruses.