5 Clinical Trials for Various Conditions
Some patients receiving mechanical ventilation have difficulty weaning off the ventilator because of physiological factors such as pre-existing lung disease, respiratory distress syndrome, and trauma among others. Allowing patients to become hypercarbic (increased blood bicarbonate level) may make it easier for these patients to be taken off the ventilator and resume breathing on their own.
Procedures performed under sedation have the same severity in regards to morbidity and mortality as procedures performed under general anesthesia1. The demand for anesthesia care outside the operating room has increased tremendously and it poses, according to a closed claim analysis, major risks to patients. Both closed claim analysis identified respiratory depression due to over sedation as the main risk to patients undergoing procedures under sedation. The major problem is that hypoventilation is only detected at very late stages in patients receiving supplemental oxygen. Besides the respiratory effects of hypoventilation, hypercapnia can also lead to hypertension, tachycardia, cardiac arrhythmias and seizures. The incidence of anesthetized patients with obstructive sleep apnea has increased substantially over the last years along with the current national obesity epidemic. These patients are at increased risk of hypoventilation when exposed to anesthetic drugs. The context of the massive increase in procedural sedation and the extremely high prevalence of obstructive sleep apnea poses major respiratory risks to patients and it may, in a near future, increase malpractice claims to anesthesiologists. The development of safer anesthesia regimen for sedation are, therefore, needed. The establishment of safer anesthetics regimen for sedation is in direct relationship with the anesthesia patient safety foundation priorities. It addresses peri-anesthetic safety problems for healthy patient's. It can also be broadly applicable and easily implemented into daily clinical care. Ketamine has an established effect on analgesia but the effects of ketamine on ventilation have not been clearly defined. The investigators have demonstrated that the transcutaneous carbon dioxide monitor is accurate in detecting hypoventilation in patients undergoing deep sedation. Animal data suggest that when added to propofol in a sedation regimen, ketamine decreased hypoventilation when compared to propofol alone. It is unknown if ketamine added to a commonly used sedative agent (propofol) and fentanyl can decrease the incidence and severity of hypoventilation in patients undergoing deep sedation. The investigators hypothesize that patients receiving ketamine, propofol and fentanyl will develop less intraoperative hypoventilation than patients receiving propofol and fentanyl. The investigators also hypothesize that this effect will be even greater in patients with obstructive sleep apnea than patients without obstructive sleep apnea. Significance: Respiratory depression due to over sedation was identified twice as the major factor responsible for claims related to anesthesia. The high prevalence of obstructive sleep apnea combined with more complex procedures done in outpatient settings can increase physical risks to patients and liability cases to anesthesiologists. The main goal of this project is to establish the effect of ketamine in preventing respiratory depression to patients undergoing procedures under deep sedation using propofol and fentanyl. If the investigators can confirm our hypothesis, our findings can be valuable not only to anesthesiologist but also to other specialties (emergency medicine, gastroenterologists, cardiologists, radiologists) that frequently performed procedural sedation. The research questions is; does the addition of ketamine prevent hypoventilation during deep sedation using propofol and fentanyl? The hypotheses of this study: Ketamine will prevent hypoventilation during deep sedation cases.
The mortality burden of trauma in the United States is substantial, and is currently the leading cause of death in warfare and in civilians below age 45. Infection and sepsis are leading causes of morbidity and death in early survivors. Pneumonia (PNA) occurs in 17-36% of ventilated trauma patients; far more than non-trauma patients. The long held dogmatic notion of a mechanical predisposition to development of pneumonia in trauma has lacked robust support. However, there is evidence of the innate immune response to injury plays a major role in increasing susceptibility to infection. This application is for support of a Focused Program Award addressing the role that "danger signaling" due to "danger associated molecular patterns" (or DAMPs) derived from somatic tissue injuries play in altering innate immune signaling in the lung in ways that predisposes to PNA. This innate immune response plays a pivotal role in the development and progression of lung inflammation. The organization of the Focused Program Award is into six Projects with collaborators from the Departments of Surgery, Medicine and Anesthesiology at Beth Israel Deaconess Medical Center; the Department of Surgery at Brigham and Women's Hospital and the Departments of Biology and Biological Engineering at Massachusetts Institute of Technology. The human subjects interaction portion of this project is covered in the Human Subjects \& Samples Project of the Award, although the information and tissues obtained from this Project will be shared with the other Projects, and the activities planned for those Projects are outlined in this application.
Patients with severe chronic diseases are often admitted to the hospital complaining of shortness of breath. Some of these patients decide that they do not want placement of a breathing tube in the windpipe to assist their breathing. In this situation, these patients are treated with oxygen, a variety of medications like morphine or masks that are connected to breathing machines, something called bilevel positive airway pressure (BiPAP) or noninvasive ventilation (NIV), to help with their breathing. Not much is known about how much noninvasive ventilation helps these patients, especially how comfortable they feel with it and how much their families think it helps. Our aim is to monitor use of ways to help breathing in patients who don't want a breathing tube, see how often noninvasive ventilation is used and ask surviving patients, patient's families and caregivers about their experience with noninvasive ventilation and how much it seemed to help. With our findings, we hope to improve the use of noninvasive ventilation in these patients and come up with ways to relieve their shortness of breath and provide as much comfort as possible.
The investigators will test the hypotheses that mild hypercapnia and supplemental oxygen reduce wound infection risk in patients undergoing colon resection. The investigators will simultaneously test the hypothesis that low-dose dexamethasone (a common treatment for postoperative nausea and vomiting) does not increase infection risk.