Treatment Trials

16 Clinical Trials for Various Conditions

Focus your search

TERMINATED
Allogenic Stem Cell Transplantation in Patients With High Risk CD33+ AML/MDS/JMML
Description

The addition of gemtuzumab ozogamicin (GO) in combination with Busulfan/Cyclophosphamide followed by AlloSCT in patients with high risk CD33+ AML/JMML/MDS will be safe and well tolerated. This study will attempt to determine the maximum tolerated dose of the immune therapy (gemtuzumab) when given in combination with the myeloablative (high dose) drugs used in this study for allogeneic stem cell transplant. (Part A)

RECRUITING
A Study to Find the Highest Dose of Imetelstat in Combination With Fludarabine and Cytarabine for Patients With AML, MDS or JMML That Has Come Back or Does Not Respond to Therapy
Description

This phase I trial tests the safety, side effects, and best dose of imetelstat in combination with fludarabine and cytarabine in treating patients with acute myeloid leukemia (AML), myelodysplastic syndrome (MDS) or juvenile myelomonocytic leukemia (JMML) that has not responded to previous treatment (refractory) or that has come back after a period of improvement (recurrent). Imetelstat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Chemotherapy drugs, such as fludarabine and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving imetelstat in combination with fludarabine and cytarabine may work better in treating patients with refractory or recurrent AML, MDS, and JMML.

COMPLETED
Stem Cell Transplant for Juvenile Myelomonocytic Leukemia (JMML)
Description

The investigators hypothesize that long-term disease-free survival (DFS) in patients with JMML can be achieved with a treatment of busulfan (BU), cyclophosphamide (CY) and melphalan (L-PAM) followed by hematopoietic cell transplantation (HCT).

RECRUITING
A Phase I/II Study of Trametinib and Azacitidine for Patients With Newly Diagnosed Juvenile Myelomonocytic Leukemia
Description

This clinical trial will test the safety and efficacy of combining trametinib and azacitidine in patients with juvenile myelomonocytic leukemia (JMML). Newly diagnosed lower-risk JMML patients will receive trametinib and azacitidine. High-risk JMML patients will receive trametinib, azacitidine, fludarabine, and cytarabine.

TERMINATED
Stem Cell Transplant for Hematological Malignancy
Description

The purpose of this study is to develop a standard of care treatment using allogeneic stem cells for patients with cancers of the blood. The protocol was revised to reflect that this study is considered "treatment guidelines", rather than a research study.

ACTIVE_NOT_RECRUITING
TCRαβ-depleted Progenitor Cell Graft With Additional Memory T-cell DLI, Plus Selected Use of Blinatumomab, in Naive T-cell Depleted Haploidentical Donor Hematopoietc Cell Transplantation for Hematologic Malignancies
Description

Patients less than or equal to 21 years old with high-risk hematologic malignancies who would likely benefit from allogeneic hematopoietic cell transplantation (HCT). Patients with a suitable HLA matched sibling or unrelated donor identified will be eligible for participation ONLY if the donor is not available in the necessary time. The purpose of the study is to learn more about the effects (good and bad) of transplanting blood cells donated by a family member, and that have been modified in a laboratory to remove the type of T cells known to cause graft-vs.-host disease, to children and young adults with a high risk cancer that is in remission but is at high risk of relapse. This study will give donor cells that have been TCRαβ-depleted. The TCR (T-cell receptor) is a molecule that is found only on T cells. These T-cell receptors are made up of two proteins that are linked together. About 95% of all T-cells have a TCR that is composed of an alpha protein linked to a beta protein, and these will be removed. This leaves only the T cells that have a TCR made up of a gamma protein linked to a delta protein. This donor cell infusion will be followed by an additional infusion of donor memory cells (CD45RA-depleted) after donor cell engraftment. This study will be testing the safety and effects of the chemotherapy and the donor blood cell infusions on the transplant recipient's disease and overall survival.

ACTIVE_NOT_RECRUITING
Provision of TCRγδ T Cells and Memory T Cells Plus Selected Use of Blinatumomab in Naïve T-cell Depleted Haploidentical Donor Hematopoietic Cell Transplantation for Hematologic Malignancies Relapsed or Refractory Despite Prior Transplantation
Description

This study seeks to examine treatment therapy that will reduced regimen-related toxicity and relapse while promoting rapid immune reconstitution with limited serious graft-versus-host-disease (GVHD) and also improve disease-free survival and quality of life. The investigators propose to evaluate the safety and efficacy of selective naive T-cell depleted (by TCRɑβ and CD45RA depletion, respectively) haploidentical hematopoietic cell transplant (HCT) following reduced intensity conditioning regimen that avoids radiation in patients with hematologic malignancies that have relapsed or are refractory following prior allogeneic transplantation. PRIMARY OBJECTIVE: * To estimate engraftment by day +30 post-transplant in patients who receive TCRɑβ-depleted and CD45RA-depleted haploidentical donor progenitor cell transplantation following reduced intensity conditioning regimen without radiation. SECONDARY OBJECTIVES: * Assess the safety and feasibility of the addition of Blinatumomab in the early post-engraftment period in patients with CD19+ malignancy. * Estimate the incidence of malignant relapse, event-free survival, and overall survival at one-year post-transplantation. * Estimate incidence and severity of acute and chronic (GVHD). * Estimate the rate of transplant related mortality (TRM) in the first 100 days after transplantation.

TERMINATED
Repeat Transplantation for Relapsed or Refractory Hematologic Malignancies Following Prior Transplantation
Description

This pilot phase II trial studies how well a new reduced intensity conditioning regimen that includes haploidentical donor NK cells followed by the infusion of selectively T-cell depleted progenitor cell grafts work in treating younger patients with hematologic malignancies that have returned after or did not respond to treatment with a prior transplant. Giving chemotherapy and natural killer cells before a donor progenitor cell transplant may help stop the growth of cells in the bone marrow, including normal blood-forming cells (progenitor cells) and cancer cells. It may also stop the patient's immune system from rejecting the donor's cells. When the healthy progenitor cells from a related donor are infused into the patient they make red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells (called graft-versus-host disease). Removing specific T cells from the donor cells before the transplant may prevent this.

ACTIVE_NOT_RECRUITING
CD34+ (Malignant) Stem Cell Selection for Patients Receiving Allogenic Stem Cell Transplant
Description

The purpose of this study is to learn more about the effects of (classification determinant) CD34+ stem cell selection on graft versus host disease (GVHD) in children, adolescents, and young adults. CD34+ stem cells are the cells that make all the types of blood cells in the body. GVHD is a condition that results from a reaction of transplanted donor T-lymphocytes (a kind of white blood cell) against the recipient's body and organs. Study subjects will be offered treatment involving the use of the CliniMACS® Reagent System (Miltenyi Biotec), a CD34+ selection device to remove T-cells from a peripheral blood stem cell transplant in order to decrease the risk of acute and chronic GVHD. This study involves subjects who are diagnosed with a malignant disease, that has either failed standard therapy or is unlikely to be cured with standard non-transplant therapy, who will receive a peripheral blood stem cell transplant. A malignant disease includes the following: Chronic Myeloid Leukemia (CML) in chronic phase, accelerated phase or blast crisis; Acute Myelogenous Leukemia (AML); Myelodysplastic Syndrome (MDS); Juvenile Myelomonocytic Leukemia (JMML); Acute Lymphoblastic Leukemia (ALL); or Lymphoma (Hodgkin's and Non-Hodgkin's).

COMPLETED
Mismatched Family Member Donor Transplantation for Children and Young Adults With High Risk Hematological Malignancies
Description

Blood and marrow stem cell transplant has improved the outcome for patients with high-risk hematologic malignancies. However, most patients do not have an appropriate HLA (immune type) matched sibling donor available and/or are unable to identify an acceptable unrelated HLA matched donor through the registries in a timely manner. Another option is haploidentical transplant using a partially matched family member donor. Although haploidentical transplant has proven curative in many patients, this procedure has been hindered by significant complications, primarily regimen-related toxicity including GVHD and infection due to delayed immune reconstitution. These can, in part, be due to certain white blood cells in the graft called T cells. GVHD happens when the donor T cells recognize the body tissues of the patient (the host) are different and attack these cells. Although too many T cells increase the possibility of GVHD, too few may cause the recipient's immune system to reconstitute slowly or the graft to fail to grow, leaving the patient at high-risk for significant infection. For these reasons, a primary focus for researchers is to engineer the graft to provide a T cell dose that will reduce the risk for GVHD, yet provide a sufficient number of cells to facilitate immune reconstitution and graft integrity. Building on prior institutional trials, this study will provide patients with a haploidentical (HAPLO) graft engineered to specific T cell target values using the CliniMACS system. A reduced intensity, preparative regimen will be used in an effort to reduce regimen-related toxicity and mortality. The primary aim of the study is to help improve overall survival with haploidentical stem cell transplant in this high risk patient population by 1) limiting the complication of graft versus host disease (GVHD), 2) enhancing post-transplant immune reconstitution, and 3) reducing non-relapse mortality.

COMPLETED
Haploidentical Stem Cell Transplantation for Patients With Hematologic Malignancies
Description

Blood and marrow stem cell transplant has improved the outcome for patients with high-risk hematologic malignancies. However, most patients do not have an appropriate HLA (immune type) matched sibling donor available and/or are unable to identify an acceptable unrelated HLA matched donor through the registries in a timely manner. Another option is haploidentical transplant using a partially matched family member donor. Although haploidentical transplant has proven curative in many patients, this procedure has been hindered by significant complications, primarily regimen-related toxicity including graft versus host disease (GVHD) and infection due to delayed immune reconstitution. These can, in part, be due to certain white blood cells in the graft called T cells. GVHD happens when the donor T cells recognize the body tissues of the patient (the host) are different and attack these cells. Although too many T cells increase the possibility of GVHD, too few may cause the recipient's immune system to reconstitute slowly or the graft to fail to grow, leaving the patient at high-risk for significant infection. This research project will investigate the use of particular pre-transplant conditioning regimen (chemotherapy, antibodies and total body irradiation) followed by a stem cell infusion from a "mismatched" family member donor. Once these stem cells are obtained they will be highly purified in an effort to remove T cells using the investigational CliniMACS stem cell selection device. The primary goal of this study will be to determine the rate of neutrophil and platelet engraftment, as well as the degree and rate of immune reconstitution in the first 100 days posttransplant for patients who receive this study treatment. Researchers will also study ways to decrease complications that may occur with a transplant from a genetically mismatched family donor.

COMPLETED
Haploidentical Stem Cell Transplant for Treatment Refractory Hematological Malignancies
Description

Relapsed disease is the most common cause of death in children with hematological malignancies. Patients who fail high-intensity conventional chemotherapeutic regimens or relapse after stem cell transplantation have a poor prognosis. Toxicity from multiple therapies and elevated leukemic/tumor burden usually make these patients ineligible for the aggressive chemotherapy regimens required for conventional stem cell transplantation. Alternative options are needed. One type of treatment being explored is called haploidentical transplant. Conventional blood or bone marrow stem cell transplant involves destroying the patient's diseased marrow with radiation or chemotherapy. Healthy marrow from a donor is then infused into the patient where it migrates to the bone marrow space to begin generating new blood cells. The best type of donor is a sibling or unrelated donor with an identical immune system (HLA "match"). However, most patients do not have a matched sibling available and/or are unable to identify an acceptable unrelated donor through the registries in a timely manner. In addition, the aggressive treatment required to prepare the body for these types of transplants can be too toxic for these highly pretreated patients. Therefore doctors are investigating haploidentical transplant using stem cells from HLA partially matched family member donors. Although haploidentical transplant has proven curative in many patients, this procedure has been hindered by significant complications, primarily regimen-related toxicity including graft versus host disease (GVHD), and infection due to delayed immune reconstitution. These can, in part, be due to certain white blood cells in the graft called T cells. GVHD happens when the donor T cells recognize the patient's (the host) body tissues are different and attack these cells. Although too many T cells increase the possibility of GVHD, too few may cause the recipient's immune system to reconstitute slowly or the graft to fail to grow, leaving the patient at high-risk for infection. However, the presence of T cells in the graft may offer a positive effect called graft versus malignancy or GVM. With GVM, the donor T cells recognize the patient's malignant cells as diseased and, in turn, attack these diseased cells. For these reasons, a primary focus for researchers is to engineer the graft to provide a T cell depleted product to reduce the risk of GVHD, yet provide a sufficient number of cells to facilitate immune reconstitution, graft integrity and GVM. In this study, patients were given a haploidentical graft engineered to with specific T cell parameter values using the CliniMACS system. A reduced intensity, preparative regimen was used to reduce regimen-related toxicity and mortality. The primary goal of this study is to evaluate overall survival in those who receive this study treatment.

COMPLETED
Allogeneic Stem Cell Transplantation Followed By Targeted Immune Therapy In Average Risk Leukemia
Description

Allogeneic stem cell transplantation (AlloSCT) followed by targeted immune therapy Gemtuzumab Ozogamicin patients with acute myeloid leukemia (AML)/juvenile myelomonocytic leukemia (JMML)/myelodysplastic syndromes (MDS) will be safe and well tolerated.

COMPLETED
Safety Study of Bone Marrow Transplant Using Mismatched Tissue Followed by Chemotherapy
Description

The purpose of this study is to see if giving high dose chemotherapy and total body irradiation before and repeating high dose chemotherapy after a bone marrow transplant could reduce the incidence of graft rejection and disease for patients with blood cancers

TERMINATED
Etanercept (Enbrel) for Juvenile Myelomonocytic Leukemia
Description

Primary Objectives: 1.1 Estimate rate of response and define acute toxicity to etanercept used in an up-front phase II window in newly diagnosed or relapsed JMML. 1.2 Determine if response to Tumor Necrosis Factor (TNF) blockade correlates with genetic basis of Juvenile Myelomonocytic Leukemia (JMML) \[mutations in NF1, Ras, SHP2\] or levels of TNFa. 1.3 Determine if TNF blockade by etanercept results in inhibition of free levels of TNFa and other cytokines by ELISA and bioassay and improves blood counts. 1.4 Estimate the two year event free survival and overall survival in JMML patients following etanercept and allogeneic hematopoietic stem cell transplantation.

Conditions
TERMINATED
Phase I Dose-Escalation Trial of Clofarabine Followed by Escalating Doses of Fractionated Cyclophosphamide in Children With Relapsed or Refractory Acute Leukemias
Description

This is a Phase I study designed to determine the MTD and assess the toxicity associated with clofarabine followed by fractionated cyclophosphamide in patients \> 1 year of age or \< 21 years of age with relapsed or refractory acute leukemias. There will be 25 to 35 patients enrolled. Cohorts of 3 to 6 patients each will receive escalated doses of clofarabine followed by fractionated cyclophosphamide until the MTD is reached. There will be no intra-patient dose escalation. Single-agent cyclophosphamide will be administered by 2-hour IVI on Day 0 of cycle 1. On Days 1, 2, and 3 and Days 8, 9, and 10 clofarabine will be administered by IVI 2 hours before each dose of cyclophosphamide (see the treatment schema below). A cycle is defined as 28 days.