104 Clinical Trials for Various Conditions
This clinical trial will test the safety and efficacy of combining trametinib and azacitidine in patients with juvenile myelomonocytic leukemia (JMML). Newly diagnosed lower-risk JMML patients will receive trametinib and azacitidine. High-risk JMML patients will receive trametinib, azacitidine, fludarabine, and cytarabine.
This phase II trial studies how well trametinib works in treating patients with juvenile myelomonocytic leukemia that has come back (relapsed) or does not respond to treatment (refractory). Trametinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This randomized phase II trial studies how well giving busulfan, cyclophosphamide, and melphalan or busulfan and fludarabine phosphate before donor hematopoietic cell transplant works in treating younger patients with juvenile myelomonocytic leukemia. Giving chemotherapy before a donor hematopoietic transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient, they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. It is not yet known whether giving busulfan, cyclophosphamide, and melphalan or busulfan and fludarabine phosphate before a donor stem cell transplant is more effective in treating juvenile myelomonocytic leukemia.
RATIONALE: Giving chemotherapy drugs, such as cytarabine and mitoxantrone, before a donor stem cell transplant helps stop the growth of cancer cells and helps stop the patient's immune system from rejecting the donor's stem cells. When certain stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving cyclosporine, methotrexate, and methylprednisolone before or after transplant may stop this from happening. PURPOSE: This phase I/II trial is studying the side effects and best way to give high-dose cytarabine together with mitoxantrone in treating patients with juvenile myelomonocytic leukemia undergoing a second donor stem cell transplant.
Primary Objectives: 1.1 Estimate rate of response and define acute toxicity to etanercept used in an up-front phase II window in newly diagnosed or relapsed JMML. 1.2 Determine if response to Tumor Necrosis Factor (TNF) blockade correlates with genetic basis of Juvenile Myelomonocytic Leukemia (JMML) \[mutations in NF1, Ras, SHP2\] or levels of TNFa. 1.3 Determine if TNF blockade by etanercept results in inhibition of free levels of TNFa and other cytokines by ELISA and bioassay and improves blood counts. 1.4 Estimate the two year event free survival and overall survival in JMML patients following etanercept and allogeneic hematopoietic stem cell transplantation.
The investigators hypothesize that long-term disease-free survival (DFS) in patients with JMML can be achieved with a treatment of busulfan (BU), cyclophosphamide (CY) and melphalan (L-PAM) followed by hematopoietic cell transplantation (HCT).
Giving chemotherapy drugs, such as R115777, isotretinoin, cytarabine, and fludarabine, before a donor bone marrow transplant or an umbilical cord transplant helps stop the growth of cancer cells. It also helps stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. This phase II trial is studying how well giving combination chemotherapy together with donor bone marrow or umbilical cord blood transplant works in treating children with newly diagnosed juvenile myelomonocytic leukemia
This phase I trial studies the side effects and best dose of CD4+ and CD8+ HA-1 T cell receptor (TCR) (HA-1 T TCR) T cells in treating patients with acute leukemia that persists, has come back (recurrent) or does not respond to treatment (refractory) following donor stem cell transplant. T cell receptor is a special protein on T cells that helps them recognize proteins on other cells including leukemia. HA-1 is a protein that is present on the surface of some peoples' blood cells, including leukemia. HA-1 T cell immunotherapy enables genes to be added to the donor cells to make them recognize HA-1 markers on leukemia cells.
This phase I trial tests the safety, side effects, and best dose of imetelstat in combination with fludarabine and cytarabine in treating patients with acute myeloid leukemia (AML), myelodysplastic syndrome (MDS) or juvenile myelomonocytic leukemia (JMML) that has not responded to previous treatment (refractory) or that has come back after a period of improvement (recurrent). Imetelstat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Chemotherapy drugs, such as fludarabine and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving imetelstat in combination with fludarabine and cytarabine may work better in treating patients with refractory or recurrent AML, MDS, and JMML.
This study will assess the safety, efficacy, and feasibility of ⍺/β CD3+ T-cell and CD19+ B-cell depletion in allogeneic stem cell transplantation in patients with acute lymphocytic leukemia (ALL), acute myeloid leukemia (AML), juvenile myelomonocytic leukemia (JMML), high risk myelodysplastic syndrome (MDS), chronic myeloid leukemia (CML) and lymphoma. Subjects will receive an allogeneic stem cell transplant that has been depleted of ⍺/β CD3+ T-cells and CD19+ B-cells using the Miltenyi CliniMACS Prodigy® system.
This is a phase II, open-label, prospective study of T cell receptor alpha/beta depletion (α/β TCD) peripheral blood stem cell (PBSC) transplantation for children and adults with hematological malignancies
This study aims to use clinical and biological characteristics of acute leukemias to screen for patient eligibility for available pediatric leukemia sub-trials. Testing bone marrow and blood from patients with leukemia that has come back after treatment or is difficult to treat may provide information about the patient's leukemia that is important when deciding how to best treat it, and may help doctors find better ways to diagnose and treat leukemia in children, adolescents, and young adults.
This research study is studying cytokine induced memory-like natural killer (CIML NK) cells combined with IL-2 in adult patients (18 years of age or older) with Acute Myeloid Leukemia (AML), Myelodysplastic Syndrome (MDS) and Myeloproliferative Neoplasms (MPN) who relapse after haploidentical hematopoietic cell transplantation (haplo-HCT) or HLA matched stem cells. This study will also study CIML NK cell infusion combined with IL-2 in pediatric patients (12 years of age or older) with AML, MDS, JMML who relapse after stem cell transplantation using HLA-matched related donor or related donor haploidentical stem cells.
Patients less than or equal to 21 years old with high-risk hematologic malignancies who would likely benefit from allogeneic hematopoietic cell transplantation (HCT). Patients with a suitable HLA matched sibling or unrelated donor identified will be eligible for participation ONLY if the donor is not available in the necessary time. The purpose of the study is to learn more about the effects (good and bad) of transplanting blood cells donated by a family member, and that have been modified in a laboratory to remove the type of T cells known to cause graft-vs.-host disease, to children and young adults with a high risk cancer that is in remission but is at high risk of relapse. This study will give donor cells that have been TCRαβ-depleted. The TCR (T-cell receptor) is a molecule that is found only on T cells. These T-cell receptors are made up of two proteins that are linked together. About 95% of all T-cells have a TCR that is composed of an alpha protein linked to a beta protein, and these will be removed. This leaves only the T cells that have a TCR made up of a gamma protein linked to a delta protein. This donor cell infusion will be followed by an additional infusion of donor memory cells (CD45RA-depleted) after donor cell engraftment. This study will be testing the safety and effects of the chemotherapy and the donor blood cell infusions on the transplant recipient's disease and overall survival.
The objective of this study is to evaluate the maximum tolerated (MTD) of vorinostat used in combination with low-dose azacitidine after allogeneic hematopoietic cell transplantation (alloHCT) for prevention of relapse of childhood myeloid malignancies.
The major morbidities of allogeneic hematopoietic stem cell transplant with non-human leukocyte antigen (HLA) matched siblings are graft vs host disease (GVHD) and life threatening infections. T depletion of the donor hematopoietic stem cell graft is effective in preventing GVHD, but immune reconstitution is slow, increasing the risk of infections. An addback of donor CD45RA (naive T cells) depleted cells may improve immune reconstitution and help decrease the risk of infections.
This is a Phase II study of allogeneic hematopoietic stem cell transplant (HCT) using a myeloablative preparative regimen (of either total body irradiation (TBI); or, fludarabine/busulfan for patients unable to receive further radiation). followed by a post-transplant graft-versus-host disease (GVHD) prophylaxis regimen of post-transplant cyclophosphamide (PTCy), tacrolimus (Tac), and mycophenolate mofetil (MMF).
This study seeks to examine treatment therapy that will reduced regimen-related toxicity and relapse while promoting rapid immune reconstitution with limited serious graft-versus-host-disease (GVHD) and also improve disease-free survival and quality of life. The investigators propose to evaluate the safety and efficacy of selective naive T-cell depleted (by TCRɑβ and CD45RA depletion, respectively) haploidentical hematopoietic cell transplant (HCT) following reduced intensity conditioning regimen that avoids radiation in patients with hematologic malignancies that have relapsed or are refractory following prior allogeneic transplantation. PRIMARY OBJECTIVE: * To estimate engraftment by day +30 post-transplant in patients who receive TCRɑβ-depleted and CD45RA-depleted haploidentical donor progenitor cell transplantation following reduced intensity conditioning regimen without radiation. SECONDARY OBJECTIVES: * Assess the safety and feasibility of the addition of Blinatumomab in the early post-engraftment period in patients with CD19+ malignancy. * Estimate the incidence of malignant relapse, event-free survival, and overall survival at one-year post-transplantation. * Estimate incidence and severity of acute and chronic (GVHD). * Estimate the rate of transplant related mortality (TRM) in the first 100 days after transplantation.
The goal of this study is to determine whether post-transplant consolidation with azacitidine combined with donor lymphocyte infusion (DLI) is a safe and effective approach for the prevention of relapse in pediatric and young adult patients with hematologic malignancies who have undergone hematopoietic stem cell transplantation (HSCT).
This is a prospective non-therapeutic study, assessing the long-term toxicity of pediatric HCT for hematologic malignancies. This study is a collaboration between the Pediatric Blood and Marrow Transplant Consortium (PBMTC), the Center for International Blood and Marrow Transplant Research (CIBMTR), the National Marrow Transplant Program (NMDP) and the Resource for Clinical Investigation in Blood and Marrow Transplantation (RCI-BMT) of the CIBMTR. The study will enroll pediatric patients who undergo myeloablative HCT for hematologic malignancies at PBMTC sites.
This pilot phase II trial studies how well a new reduced intensity conditioning regimen that includes haploidentical donor NK cells followed by the infusion of selectively T-cell depleted progenitor cell grafts work in treating younger patients with hematologic malignancies that have returned after or did not respond to treatment with a prior transplant. Giving chemotherapy and natural killer cells before a donor progenitor cell transplant may help stop the growth of cells in the bone marrow, including normal blood-forming cells (progenitor cells) and cancer cells. It may also stop the patient's immune system from rejecting the donor's cells. When the healthy progenitor cells from a related donor are infused into the patient they make red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells (called graft-versus-host disease). Removing specific T cells from the donor cells before the transplant may prevent this.
The purpose of this study is to learn more about the effects of (classification determinant) CD34+ stem cell selection on graft versus host disease (GVHD) in children, adolescents, and young adults. CD34+ stem cells are the cells that make all the types of blood cells in the body. GVHD is a condition that results from a reaction of transplanted donor T-lymphocytes (a kind of white blood cell) against the recipient's body and organs. Study subjects will be offered treatment involving the use of the CliniMACS® Reagent System (Miltenyi Biotec), a CD34+ selection device to remove T-cells from a peripheral blood stem cell transplant in order to decrease the risk of acute and chronic GVHD. This study involves subjects who are diagnosed with a malignant disease, that has either failed standard therapy or is unlikely to be cured with standard non-transplant therapy, who will receive a peripheral blood stem cell transplant. A malignant disease includes the following: Chronic Myeloid Leukemia (CML) in chronic phase, accelerated phase or blast crisis; Acute Myelogenous Leukemia (AML); Myelodysplastic Syndrome (MDS); Juvenile Myelomonocytic Leukemia (JMML); Acute Lymphoblastic Leukemia (ALL); or Lymphoma (Hodgkin's and Non-Hodgkin's).
The primary aim of this protocol is to evaluate if the one-year survival is significantly improved in the group of patients who receive a T-cell replete haploidentical donor hematopoietic cell transplant (HCT) with a novel reduced intensity conditioning regimen. Study population will consist of patients (21 years or under) with hematologic malignancies that have relapsed or are refractory after prior allogeneic transplant. Toxicity will be evaluated by the rate of transplant related mortality and the rates of moderate and severe graft-versus-host disease (GvHD) at day 100. The investigators will describe event-free, and disease-free survival at one year, as well as the rates of hematopoietic recovery and donor engraftment and study comprehensively immune reconstitution following T-cell replete haploidentical transplantation.
This phase II trial studies how well giving fludarabine phosphate, melphalan, and low-dose total-body irradiation (TBI) followed by donor peripheral blood stem cell transplant (PBSCT) works in treating patients with hematologic malignancies. Giving chemotherapy drugs such as fludarabine phosphate and melphalan, and low-dose TBI before a donor PBSCT helps stop the growth of cancer and abnormal cells and helps stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from the donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cell from a donor can make an immune response against the body's normal cells. Giving tacrolimus, mycophenolate mofetil (MMF), and methotrexate after transplant may stop this from happening
This phase I/II trial is studying the side effects and best dose of sorafenib in treating young patients with relapsed or refractory solid tumors or leukemia. Sorafenib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the cancer.
The purpose of this research study is to compare the survival rates of patients with better risk disease undergoing hematopoietic stem cell transplant (HSCT) to the survival rates reported in the medical literature of similar patients undergoing reduced intensity HSCT from matched related donors.
This randomized phase III trial is studying how well Caphosol rinse works in preventing mucositis in young patients undergoing autologous or donor stem cell transplant. Supersaturated calcium phosphate (Caphosol) rinse may be able to prevent mucositis, or mouth sores, in patients undergoing stem cell transplant.
This phase I trial is studying the side effects, best way to give, and best dose of Akt inhibitor MK2206 (MK2206) in treating patients with recurrent or refractory solid tumors or leukemia. MK2206 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
RATIONALE: Giving chemotherapy before a donor umbilical cord blood transplant (UCBT) helps stop the growth of cancer and abnormal cells and helps stop the patient's immune system from rejecting the donor's stem cells. When the stem cells from an unrelated donor, that do not exactly match the patient's blood, are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving antithymocyte globulin before transplant and cyclosporine and mycophenolate mofetil after transplant may stop this from happening. PURPOSE: This phase II trial is studying how well donor umbilical cord blood stem cell transplant works in treating patients with hematologic malignancies.
This clinical trial studies massage therapy given by caregiver in treating quality of life of young patients undergoing treatment for cancer. Massage therapy given by a caregiver may improve the quality of life of young patients undergoing treatment for cancer