593 Clinical Trials for Various Conditions
The primary objective of the study is to determine whether dietary intervention to increase fiber and decrease fat reduces C. difficile infection recurrence in a cohort of oncology patients.
To determine if MRD (minimal residual disease) can be found in the blood (only) as opposed to bone marrow in children with ALL (acute lymphoblastic leukemia).
This goal of this clinical research study is to learn if the combination of methotrexate, pegylated-L-asparaginase, vincristine, and dexamethasone (also rituximab in some patients) can help to control ALL that has not responded to previous treatment or has come back after a response or chronic myeloid leukemia (CML).
Hypothesis: Pediatric patients with acute lymphoblastic leukemia, treated with chronic glucocorticoids as a part of the leukemia treatment protocol, will have an increased incidence and severity of osteoporosis.
This is a phase I trial in patients with relapsed or refractory leukemia of a human monoclonal antibody that kills B cell acute lymphoblastic leukemia. The trial will study the safety, pharmacokinetics, and anti-tumor activity of the antibody given as a single agent and with vincristine.
This study primarily determined the safety and tolerability of escalating doses of vosaroxin (SNS-595) in 2 dose schedules, and assessed the PK profile of vosaroxin and defined a recommended dose regimen for Phase 2 studies. Secondarily the study assessed potential biomarkers and antileukemic activity.
The purpose of the study is to evaluate the overall and disease free survival of recipients who have received G-CSF mobilized stem cells from HLA matched sibling donors.
This protocol using busulfan, cyclophosphamide and melphalan has been designed as conditioning therapy for patients receiving stem cell transplantation for acute leukemia or myelodysplastic syndrome (MDS). The hypothesis is that this new regimen will be well tolerated and will cure the patient.
The goal of this clinical research study is to learn if combining cord blood units to make the cells "take" faster in recipients will help to improve the results of cord blood transplants.
Background: Blood cancers (such as leukemias) can be hard to treat, especially if they have mutations in the TP53 or RAS genes. These mutations can cause the cancer cells to create substances called neoepitopes. Researchers want to test a method of treating blood cancers by altering a person s T cells (a type of immune cell) to target neoepitopes. Objective: To test the use of neoepitope-specific T cells in people with blood cancers Eligibility: People aged 18 to 75 years with any of 9 blood cancers. Design: Participants will have a bone marrow biopsy: A sample of soft tissue will be removed from inside a pelvic bone. This is needed to confirm their diagnosis and the TP53 and RAS mutations in their cancer cells. They will also have a skin biopsy to look for these mutations in other tissue. Participants will undergo apheresis: Blood will be taken from their body through a vein. The blood will pass through a machine that separates out the T cells. The remaining blood will be returned to the body through a different vein. The T cells will be grown to become neoepitope-specific T cells. Participants receive drugs for 3 days to prepare their body for the treatment. The modified T cells will be given through a tube inserted into a vein. Participants will need to remain in the clinic at least 7 days after treatment. Participants will have 8 follow-up visits in the first year after treatment. They will have 6 more visits over the next 4 years. Long-term follow-up will go on for 10 more years.
This study will evaluate whether processing blood stem cell transplants using an investigational device (the CliniMACS system) results in less complications for patients undergoing transplant for treatment of a blood malignancy (cancer) or blood disorder.
A phase 1/2 dose escalation / dose expansion study of Enzomenib (DSP-5336) in adult patients with acute leukemia.
This research study tests an investigational drug called DS-3201b. An investigational drug is a medication that is still being studied and has not yet been approved by the United States Food and Drug Administration (FDA). The FDA allows DS-3201b to be used only in research. It is not known if DS-3201b will work or not. This study consists of two parts. The first part (Part 1) is a dose escalation that will enroll subjects with AML or ALL that did not respond or no longer respond to previous standard therapy. The purpose of Part 1 of this research study is to determine the highest dose a patient can tolerate or recommended dose of DS-3201b that can be given to subjects with AML or ALL. Once the highest tolerable dose is determined, additional subjects will be enrolled at that dose into Part 2 of the study.
While neurocognitive impairments in attention, memory and executive functioning are commonly reported sequelae of childhood leukemia and brain tumors, studies have only recently begun to examine the treatment of attention deficits in this population. Numerous studies have examined the effectiveness of methylphenidate in the treatment of children with attention deficit hyperactivity disorder (ADHD). However, the effectiveness of this medication for improving attention and behavioral functioning in children with medical illnesses or brain injury are less clear. Patients will be randomized to receive one week of Metadate CD (a controlled release form of methylphenidate, similar to Ritalin) and one week of placebo in a double-blind fashion.
Modern frontline therapy for patients with hematologic malignancies is based on intensive administration of multiple drugs. In patients with relapsed disease, response to the same drugs is generally poor, and dosages cannot be further increased without unacceptable toxicities. For most patients, particularly those who relapse while still receiving frontline therapy, the only therapeutic option is hematopoietic stem cell transplantation (SCT). For those who relapse after transplant, or who are not eligible for transplant because of persistent disease, there is no proven curative therapy. There is mounting evidence that NK cells have powerful anti-leukemia activity. In patients undergoing allogeneic SCT, several studies have demonstrated NK-mediated anti-leukemic activity. NK cell infusions in patients with primary refractory or multiple-relapsed leukemia have been shown to be well tolerated and void of graft-versus-host disease (GVHD) effects. Myeloid leukemias are particularly sensitive to NK cells cytotoxicity, while B-lineage acute lymphoblastic leukemia (ALL) cells are often NK-resistant. We have developed a novel method to expand NK cells and enhance their cytotoxicity. Expanded and activated donor NK cells have shown powerful anti-leukemic activity against acute myeloid leukemia (AML) cells and T-lineage ALL cells in vitro and in animal models of leukemia. The present study represents the translation of these laboratory findings into clinical application.We propose to determine the safety of infusing expanded NK cells in pediatric patients who have chemotherapy refractory or relapse hematologic malignancies including AML, T-lineage ALL, T-cell lymphoblastic lymphoma (T-LL), chronic myelogenous leukemia (CML), juvenile myelomonocytic leukemia (JMML),myelodysplastic syndrome (MDS), Ewing sarcoma family of tumors (ESFT) and rhabdomyosarcoma (RMS). The NK cells used for this study will be obtained from the patient's family member who will be a partial match to the patient's immune type (HLA type).
The study is designed as a phase III, randomized, open label, multicenter, prospective, comparative trial of sirolimus and tacrolimus versus tacrolimus and methotrexate as graft-versus-host disease (GVHD) prophylaxis after human leukocyte antigen (HLA)-matched, related, peripheral blood stem cell transplantation in individuals with hematologic cancer. Participants will be stratified by transplant center and will be randomly assigned to the sirolimus/tacrolimus or tacrolimus/methotrexate arms at a 1:1 ratio.
The purpose of this study is to determine whether the addition of parathyroid hormone after a sequential cord blood transplant will improve engraftment, which is the ability of the transplanted stem cells to grow and to successfully begin producing new blood cells.
The purpose of this clinical research study is to provide dasatinib treatment to patients with advanced chronic myelogenous leukemia (CML) or Philadelphia chromosome positive acute lymphoblastic leukemia (Ph+ ALL) who no longer can tolerate treatment with imatinib. The safety of the treatment will also be studied.
The purpose of this study is to develop a standard of care treatment using allogeneic stem cells for patients with cancers of the blood. The protocol was revised to reflect that this study is considered "treatment guidelines", rather than a research study.
The purpose of this study is to test the hypothesis that a pre-infusion preparative regimen of cyclophosphamide and fludarabine will improve the effectiveness of DLI in patients with blood cancers.
In this study our hypothesis is that infusion of donor lymphocyte immune cells from the subject's bone marrow donor will activate the subject's immune system to attack their cancer.
Clofarabine (injection) is approved by the Food and Drug Administration (FDA) for the treatment of pediatric patients 1 to 21 years old with relapsed acute lymphoblastic leukemia (ALL) who have had at least 2 prior treatment regimens. This research study of clofarabine will be used for advanced cancer in persons in which drugs are no longer effective or no reliable effective treatment is available. The purpose of this study is to find the answers to the following research questions: 1. What is the largest dose of clofarabine that can be safely administered as an IV infusion (over at least 2 hours) once a week for 3 weeks (days 1, 8 and 15) followed by 1 week of rest and repeated every 28 days? 2. What are the side effects of clofarabine when given on this schedule? 3. How much clofarabine is in the blood at specific times after administration and how does the body get rid of the drug? Once the MTD/RP2D is established, patients will be enrolled at the MTD/RP2D regardless of the PK data with cardiac assessments done every other cycle. 4. Will clofarabine help treat a specific cancer?
High dose chemotherapy followed by transplantation of allogeneic hematopoietic stem cell with the use of Campath-1h, a monoclonal antibody that have a synergistic effect to chemotherapy with minimal toxicity. In addition Campath-1H can improve engraftment of donor cells through its immunosuppressive properties.
OBJECTIVES: I. Determine the effectiveness of moderate dose cyclophosphamide and radiotherapy in terms of improving survival and reducing the morbidity following allogeneic bone marrow transplantation in patients with myelodysplastic syndrome and acute leukemia related to Fanconi's anemia.
This study tests the hypothesis that a purely immunosuppressive preparative regimen allows engraftment of related or unrelated allogeneic hematopoietic stem cells in subjects with high-risk malignancies, without causing the post-transplant myelosuppression (e.g., neutropenia, thrombocytopenia) that occurs with currently used reduced-intensity (nonmyeloablative) preparative regimens. This study incorporates both safety and efficacy endpoints and evaluates a novel preparative regimen of alemtuzumab plus continuous-infusion pentostatin, two immunosuppressive agents with different mechanisms of action, in recipients of related or unrelated allogeneic hematopoietic stem cell transplantation.
Monoclonal antibodies can locate cancer cells and either kill them or deliver cancer-killing substances to them without harming normal cells. Phase I trial to study the effectiveness of monoclonal antibody therapy in treating patients who have chronic lymphocytic leukemia, lymphocytic lymphoma, acute lymphoblastic leukemia, or acute myeloid leukemia.
To learn about the safety of giving the drug brexucabtagene autoleucel to participants with relapsed/refractory B-cell ALL after treatment with inotuzumab ozogamicin, blinatumomab, and either hyper-CVAD or mini-hyper-CVD. Also, to learn if giving brexucabtagene autoleucel to patients with relapsed/refractory or high-risk, newly diagnosed B-cell ALL after treatment with inotuzumab ozogamicin, blinatumomab, and either hyper-CVAD or mini-hyper-CVD can help to control the disease.
This Phase 1 study will evaluate the safety, tolerability, pharmacokinetics/pharmacodynamics (PK/PD), and clinical activity of KT-253 in adult patients with relapsed or refractory (R/R) high grade myeloid malignancies, acute lymphocytic leukemia (ALL), R/R lymphoma, myelofibrosis, and R/R solid tumors. The study will identify the pharmacologically optimal dose(s) (MTD) of KT-253 as the recommended Phase 2 dose (RP2D), based on all safety, PK, PD, and efficacy data.
To learn if cyclophosphamide, vincristine, and dexamethasone (called mini hyper-CVD) in combination with intrathecal (delivered into the spine) chemotherapy (methotrexate, hydrocortisone, cytarabine) and compressed rituximab, blinatumomab, and inotuzumab ozogamicin (called cRIB) can help to control the disease.
This phase II trial studies how well inotuzumab ozogamicin works in treating patients with B-cell acute lymphocytic leukemia with positive minimal residual disease. Inotuzumab ozogamicin is a monoclonal antibody called inotuzumab linked to a toxic agent called ozogamicin. Inotuzumab ozogamicin attaches to B cell-specific CD22 cancer cells in a targeted way and kills them.