333 Clinical Trials for Various Conditions
This study will enroll 6 DLT evaluable subjects (up to 12 patients total) where we will evaluate feasibility and safety of adoptive cellular therapy combined with IDH1/2 inhibitors in patients with recurrent or progressive oligodendroglioma WHO grade 2 and WHO grade 3.
This is a phase II, single arm, open label study looking how well a drug called abemaciclib works in patients with recurrent oligodendroglioma
This pilot clinical trial studies the side effects of NovoTTF-200A device in treating patients with newly diagnosed high risk oligodendroglioma. NovoTTF-200A device is a portable battery operated device which produces tumor treating (TT)Fields in the body by means of surface electrodes placed on the skin. TTFields are very low intensity, intermediate frequency electric fields that may slow the growth of tumor cells in patients with high risk oligodendroglioma.
The purpose of this study is to see how effective treatment of high doses of chemotherapy is for your tumor. We will also be looking at the side effects and risks of this treatment. You will receive very high doses of chemotherapy. High doses of chemotherapy can destroy tumor cells, but it can also destroy normal bone marrow cells. These cells produce white blood cells (which fight infection), red blood cells (which carry oxygen) and platelets (which allow your blood to clot). With too few of these cells there is a serious risk of infection and bleeding. Therefore, before treatment begins, we will collect some of your own blood cells, called peripheral blood progenitor cells (PBPCs). These cells help create new blood cells. The PBPCs are frozen and saved while you are being treated. Then at the end of treatment, your PBPCs are thawed and given back to you. These healthy PBPCs will replace the blood cells that the high dose chemotherapy destroys and allow your bone marrow to recover and produce blood cells. In a prior study we treated 69 patients in a similar way. More than half were able to avoid or delay brain radiation. This new study will use a different high dose chemotherapy regimen.
RATIONALE: Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. PURPOSE: This phase II trial is studying how well temozolomide works in treating patients with newly diagnosed anaplastic oligodendroglioma or mixed oligoastrocytoma.
Rationale: Standard therapy for anaplastic oligodendrogliomas and mixed oligoastrocytomas includes radiation and chemotherapy. However, due to the potential long-term central nervous system toxicity from radiation, researchers speculate that it may be better to reserve radiation therapy for progressive disease. In addition, some patients with anaplastic oligodendroglioma and mixed oligoastrocytoma have unusually chemosensitive tumors. Previous research indicates that brain tumor patients with a deletion of the 1p chromosome have a higher response to the chemotherapy drug temozolomide.
Phase 2 trial to explore the efficacy and safety of irinotecan (CPT-11). Also administered at each cycle was zofran/Kytril/Anzemet, decadron, and IV atropine. At each cycle, patient exams and interviews as well as lab results were to help the research team to determine the symptomatic side effects of the treatment. Recorded past toxicities were to be compared with current side effects.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Radiation therapy uses high-energy x-rays to damage tumor cells. Combining chemotherapy and radiation therapy may kill more tumor cells. PURPOSE: Phase II trial to study the effectiveness of combining temozolomide with radiation therapy in treating patients who have newly diagnosed anaplastic oligodendrogliomas or mixed anaplastic oligoastrocytomas.
RATIONALE: Biological therapies use different ways to stimulate the immune system and stop cancer cells from growing. Combining different types of biological therapies may kill more tumor cells. PURPOSE: Phase II trial to study the effectiveness of biological therapy following surgery and radiation therapy in treating patients who have primary or recurrent astrocytoma or oligodendroglioma.
RATIONALE: Current therapies for adult recurrent/progressive oligodendrogliomas provide very limited benefit to the patient. The anti-cancer properties of Antineoplaston therapy suggest that it may prove beneficial in the treatment of childhood brain tumors. PURPOSE: This study is being performed to determine the effects (good and bad) that Antineoplaston therapy has on adult recurrent/progressive oligodendrogliomas.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. PURPOSE: Phase II trial to study the effectiveness of temozolomide in treating patients with anaplastic oligodendroglioma.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining more than one drug and combining chemotherapy with autologous bone marrow transplantation or peripheral stem cell transplantation may allow doctors to give higher doses of chemotherapy drugs and kill more tumor cells. PURPOSE: Phase II trial to study the effectiveness of combination chemotherapy plus bone marrow transplantation or peripheral stem cell transplantation in treating patients who have oligodendroglioma.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Radiation therapy uses high-energy x-rays to damage tumor cells. Combining chemotherapy with radiation therapy may kill more tumor cells. PURPOSE: Randomized phase III trial to compare the effectiveness of radiation therapy with or without chemotherapy in treating patients who have anaplastic oligodendroglioma.
This study will evaluate the safety and tolerability of increasing doses of PF-06840003 in patients with malignant gliomas.
This is a pilot neoadjuvant vaccine study in adults with WHO grade II glioma, for which surgical resection of the tumor is clinically indicated. Co-primary objectives are to determine: 1) the safety and feasibility of the neoadjuvant approach; and 2) whether the regimen increases the level of type-1 chemokine CXCL10 and vaccine-specific (i.e., reactive to GBM6-AD) CD8+ T-cells in tumor-infiltrating leukocytes (TILs) in the surgically resected glioma.
This phase I/II trial is studying the side effects and best dose of imatinib mesylate and to see how well it works in treating patients with a recurrent brain tumor that has not responded to previous surgery and radiation therapy. Imatinib mesylate may stop the growth of tumor cells by blocking the enzymes necessary for tumor cell growth.
Recent advances in technology have allowed for the detection of cell-free DNA (cfDNA). cfDNA is tumor DNA that can be found in the fluid that surrounds the brain and spinal cord (called cerebrospinal fluid or CSF) and in the blood of patients with brain tumors. The detection of cfDNA in blood and CSF is known as a "liquid biopsy" and is non-invasive, meaning it does not require a surgery or biopsy of tumor tissue. Multiple studies in other cancer types have shown that cfDNA can be used for diagnosis, to monitor disease response to treatment, and to understand the genetic changes that occur in brain tumors over time. Study doctors hope that by studying these tests in pediatric brain tumor patients, they will be able to use liquid biopsy in place of tests that have more risks for patients, like surgery. There is no treatment provided on this study. Patients who have CSF samples taken as part of regular care will be asked to provide extra samples for this study. The study doctor will collect a minimum of one extra tube of CSF (about 1 teaspoon or 5 mL) for this study. If the patients doctor thinks it is safe, up to 2 tubes of CSF (about 4 teaspoons or up to 20 mL) may be collected. CSF will be collected through the indwelling catheter device or through a needle inserted into the lower part of the patient's spine (known as a spinal tap or lumbar puncture). A required blood sample (about ½ a teaspoon or 2 3 mL) will be collected once at the start of the study. This sample will be used to help determine changes found in the CSF. Blood will be collected from the patient's central line or arm as a part of regular care. An optional tumor tissue if obtained within 8 weeks of CSF collection will be collected if available. Similarities between changes in the DNA of the tissue that has caused the tumor to form and grow with the cfDNA from CSF will be compared. This will help understand if CSF can be used instead of tumor tissue for diagnosis. Up to 300 people will take part in this study. This study will use genetic tests that may identify changes in the genes in the CSF. The report of the somatic mutations (the mutations that are found in the tumor only) will become part of the medical record. The results of the cfDNA sequencing will be shared with the patient. The study doctor will discuss what the results mean for the patient and patient's diagnosis and treatment. Looking for inheritable mutations in normal cells (blood) is not the purpose of this study. Genetic tests of normal blood can reveal information about the patient and also about the their relatives. The doctor will discuss what the tests results may mean for the patient and the their family. Patient may be monitored on this study for up to 5 years.
Patients will receive a vaccine called SurVaxM on this study. While vaccines are usually thought of as ways to prevent diseases, vaccines can also be used to treat cancer. SurVaxM is designed to tell the body's immune system to look for tumor cells that express a protein called survivin and destroy them. The survivin protein can be found on up to 95% of glioblastomas and other types of cancer but is not found in normal cells. If the body's immune system knows to destroy cells that express survivin, it may help to control tumor growth and recurrence. SurVaxM will be mixed with Montanide ISA 51 before it is given. Montanide ISA 51 is an ingredient that helps create a stronger immune response in people, which helps the vaccine work better. This study has two phases: Priming and Maintenance. During the Priming Phase, patients will get one dose of SurVaxM combined with Montanide ISA 51 through a subcutaneous injection (a shot under the skin) at the start of the study and every 2 weeks for 6 weeks (for a total of 4 doses). At the same time that patients get the SurVaxM/Montanide ISA 51 injection, they will also get a second subcutaneous injection of a medicine called sargramostim. Sargramostim is given close to the SurVaxM//Montanide ISA 51 injection and works to stimulate the immune system to help the SurVaxM/Montanide ISA 51 work more effectively. If a patient completes the Priming Phase without severe side effects and his or her disease stays the same or improves, he or she can continue to the Maintenance Phase. During the Maintenance Phase, the patient will get a SurVaxM/Montanide ISA 51 dose along with a sargramostim dose about every 8 weeks for up to two years. After a patient finishes the study treatment, the doctor and study team will continue to follow his/her condition and watch for side effects up to 3 years following the last dose of SurVaxM/Montanide ISA 51. Patients will be seen in clinic every 3 months during the follow-up period.
This is a multicenter phase 1 trial of INCB7839 for children with recurrent or progressive high-grade gliomas, including, but not limited to, diffuse intrinsic pontine glioma (DIPG) and other diffuse midline gliomas (DMGs), after upfront therapy.
Approximately 90% of children with malignant brain tumors that have recurred or relapsed after receiving conventional therapy will die of disease. Despite this terrible and frustrating outcome, continued treatment of this population remains fundamental to improving cure rates. Studying this relapsed population will help unearth clues to why conventional therapy fails and how cancers continue to resist modern advances. Moreover, improvements in the treatment of this relapsed population will lead to improvements in upfront therapy and reduce the chance of relapse for all. Novel therapy and, more importantly, novel approaches are sorely needed. This trial proposes a new approach that evaluates rational combination therapies of novel agents based on tumor type and molecular characteristics of these diseases. The investigators hypothesize that the use of two predictably active drugs (a doublet) will increase the chance of clinical efficacy. The purpose of this trial is to perform a limited dose escalation study of multiple doublets to evaluate the safety and tolerability of these combinations followed by a small expansion cohort to detect preliminary efficacy. In addition, a more extensive and robust molecular analysis of all the participant samples will be performed as part of the trial such that we can refine the molecular classification and better inform on potential response to therapy. In this manner the tolerability of combinations can be evaluated on a small but relevant population and the chance of detecting antitumor activity is potentially increased. Furthermore, the goal of the complementary molecular characterization will be to eventually match the therapy with better predictive biomarkers. PRIMARY OBJECTIVES: * To determine the safety and tolerability and estimate the maximum tolerated dose/recommended phase 2 dose (MTD/RP2D) of combination treatment by stratum. * To characterize the pharmacokinetics of combination treatment by stratum. SECONDARY OBJECTIVE: * To estimate the rate and duration of objective response and progression free survival (PFS) by stratum.
The best dose of radiation to be given with bevacizumab is currently unknown. This study will use higher doses of radiation with bevacizumab than have been used before. This study will test the safety of radiation given at different doses with bevacizumab to find out what effects, good and/or bad, it has on the patient and the malignant glioma or related brain cancers.
This is a Phase I study of Nanoliposomal CPT-11 in patients with Recurrent high-grade gliomas. Patients must have a histologically proven intracranial malignant glioma, which includes glioblastoma multiforme (GBM), gliosarcoma (GS), anaplastic astrocytoma (AA), anaplastic oligodendroglioma (AO), anaplastic mixed oligoastrocytoma (AMO), or malignant astrocytoma NOS (not otherwise specified). Patients who are wild type or heterozygous for the UGT1A1\*28 gene will received Nanoliposomal CPT-11. The total anticipated accrual will be approximately 36 patients (depending upon the actual MTD). The investigators hypothesis is that this new formulation of CPT-11 will increase survival over that seen in historical controls who have recurrent gliomas because CPT-11 will be encapsulated in a liposome nanoparticle, which has been seen to reduce toxicities from the drug.
The overarching goal of this project is to assess the feasibility, acceptability, and appropriateness of recruitment methods, target population, and a waitlist design to finalize the protocol of FearLess in primary malignant brain tumor patients and caregivers
This phase IV trial compares patient satisfaction with telehealth versus in-person neuro-oncology assessments among glioma patients receiving oral chemotherapy. Gliomas are the most common primary central nervous system cancer and are associated with a high symptom burden, such as drowsiness, fatigue, memory difficulty, and difficulty communicating. Care at a high volume center is associated with an overall survival benefit, however, many patients may have physical or financial difficulties preventing access to these centers. Telehealth visits use computers, cameras, videoconferencing, the internet, satellite, and wireless communications to deliver healthcare, while in-person visits require the interaction to take place in the physical presence of someone else. Telehealth neuro-oncology assessments may be preferable compared to in-person assessments in glioma patients receiving oral chemotherapy.
This study seeks to investigate an evidence-based, manualized, behavioral health intervention, Cognitive Behavioral Therapy for Insomnia (CBT-I), in individuals with primary brain tumors (PBT) and insomnia. Our project will assess the feasibility and acceptability of recruitment, enrollment, data collection procedures, and retention of individuals with PBT and insomnia in the behavioral health intervention, CBT-I, and investigate the potential benefits of CBT-I within this at-risk and understudied population. In the long term, the goals are to expand treatment options for neuro-oncology patients and improve their mission readiness and overall wellbeing.
The goal of this study is to determine the efficacy of the study drug olutasidenib to treat newly diagnosed pediatric and young adult patients with a high-grade glioma (HGG) harboring an IDH1 mutation. The main question the study aims to answer is whether the combination of olutasidenib and temozolomide (TMZ) can prolong the life of patients diagnosed with an IDH-mutant HGG.
The purpose of this study is to find out if performing additional Magnetic Resonance Image (MRI) scans of the subjects' brain during each week of the radiation treatment of their high-grade glioma will help improve the radiation treatment.
This study assesses the safety and efficacy of repeat monthly dosing of super-selective intra-arterial cerebral infusion (SIACI) of cetuximab and bevacizumab in patients \< 22 years of age.
Glioblastoma (GBM), WHO grade IV glioma, represents the majority of adult malignant primary brain tumors, with an incidence of 2-3 per 100,000 person-years. The survival for GBM has increased in the last decade but is still low with a median survival of 15-18 months. Recurrence after initial standard therapy, radiation therapy and chemotherapy with temozolomide, few options are available. Even with further therapy, median progression free survival at 6 months after first relapse (PFS-6) is only 15%. Similarly, anaplastic astrocytoma and anaplastic oligodendroglioma, grade III gliomas, once recurrent after radiation therapy and first-line chemotherapy, have identical therapeutic options and poor outcomes with PFS-6 of 31%. Temozolomide (TMZ) has a favorable side effect profile and is available orally, however, cytotoxicity occurs. Metronomic temozolomide at low doses on a continuous schedule, have demonstrated better survival in studies. This study will determine the recommended dose and the side effects of PCI-24781/Abexinostat with metronomic temozolomide.
This is a phase 1 open-label, multicenter study to investigate tolerability, safety and PK properties of oral OKN-007 in patients with recurrent high-grade glioma.