1,304 Clinical Trials for Various Conditions
The purpose of this study is to determine the feasibility and safety of administering CMV RNA-pulsed dendritic cells (DCs), also known as CMV-DCs, to children and young adults up to 35 years old with nWHO Grade IV glioma, recurrent malignant glioma, or recurrent medulloblastoma. Evidence for efficacy will also be sought. This will be a phase 1 study evaluating CMV-DC administration with tetanus toxoid (Td) preconditioning and Granulocyte Macrophage-Colony Stimulating Factor (GM-CSF) adjuvant in children and young adults up to 35 years old with WHO grade IV glioma, recurrent malignant glioma, or recurrent medulloblastoma. This safety study will enroll a maximum of 10 patients.
The purpose of this research is to test the safety and effectiveness of the investigational drug ruxolitinib when it is combined with standard of care treatment (radiation therapy and temozolomide) for the treatment of newly diagnosed glioblastoma. Half the people in the study will be assigned to take the study drug ruxolitinib in addition to the standard of care temozolomide and radiation therapy and the other half will be assigned to the standard of care temozolomide and radiation therapy only. This assignment will be randomized in a 1-to-1 ratio, like the flip of a coin.
The body has different ways of fighting infection and disease. No single way seems perfect for fighting cancers. This research study combines two different ways of fighting cancer: antibodies and T cells. Antibodies are types of proteins that protect the body from infectious diseases and possibly cancer. T-cells, also called T lymphocytes, are special infection-fighting blood cells that can kill other cells, including cells infected with viruses and tumor cells. Both antibodies and T cells have been used to treat participants with cancers. They have shown promise, but have not been strong enough to cure most participants. The study team has found from previous research that we can put a new gene (a tiny part of what makes-up DNA and carries the participants traits) into T cells that will make them recognize cancer cells and kill them. In the lab, the study team has made several genes called a chimeric antigen receptor (CAR), from an antibody called GC33. The antibody GC33 recognizes a protein found on the participants brain tumor. This CAR is called GPC3-CAR. To make this CAR more effective, the study has also added a gene that includes IL15. IL15 is a protein that helps CAR T cells grow better and stay in the blood longer so that they may kill tumors better. The mixture of GPC3-CAR and IL15 killed tumor cells better in the laboratory when compared with CAR T cells that did not have IL15. This study will test T cells with the IL15 GPC3-CAR (GO-CART T cells) in participants with GPC3-positive brain tumors. T cells made to carry a gene called iCasp9 can be killed when they encounter a specific drug called AP1903. The study team will insert the iCasp9 and IL15 together into the T cells using a virus that has been made for this study. The drug (AP1903) is an experimental drug that has been tested in humans with no bad side-effects. The study team will use this drug to kill the T cells if necessary due to side effects. This study will test T cells genetically engineered with a GPC3-CAR and IL15 (GO-CART T cells) in participants with GPC3-positive brain tumors. The GO-CART T cells are an investigational product not approved by the Food and Drug Administration.
This research study involves the study of granulocyte colony stimulating factor (G-CSF) in patients with MGMT-methylated glioblastoma multiforme (GBM) that are undergoing standard chemoradiation. The study aims to evaluate G-CSF's effects on brain health and cognitive function. The name of the study drugs involved in this study are: * G-CSF (also called Filgrastim) * Temozolomide (TMZ), a standard of care chemotherapy drug
* To perform metabolic phenotyping of treatment naïve and recurrent GBM by multitracer \[18F\]Fluciclovine and 18F-FDG PET. * To compare uptake measures of 18F-Fluciclovine and 18F-FDG and MRI quantification of glutamate and lactate levels to tumor tissue laboratory assays (RNA seq and proteomics) of glutamine/glutamate, glucose, and lactate metabolism. * To perform metabolic phenotyping of treatment naïve and recurrent GBM by advanced MRI methods at 7 Tesla
This will be a prospective, open-label, single-arm pilot study to investigate the safety and efficacy of Bevacizumab (BEV) in combination with microbubble (MB)-mediated FUS in patients with recurrent GBM. BEV represents the physician's best choice for the standard of care (SoC) in rGBM after previous treatment with surgery (if appropriate), standard radiotherapy with temozolomide chemotherapy, and with adjuvant temozolomide.
Previous evidence has indicated that resection for recurrent glioblastoma might benefit the prognosis of these patients in terms of overall survival. However, the demonstrated safety profile of this approach is contradictory in the literature and the specific benefits in distinct clinical and molecular patient subgroups remains ill-defined. The aim of this study, therefore, is to compare the effects of resection and best oncological treatment for recurrent glioblastoma as a whole and in clinically important subgroups. This study is an international, multicenter, prospective observational cohort study. Recurrent glioblastoma patients will undergo tumor resection or best oncological treatment at a 1:1 ratio as decided by the tumor board. Primary endpoints are: 1) proportion of patients with NIHSS (National Institute of Health Stroke Scale) deterioration at 6 weeks after surgery and 2) overall survival. Secondary endpoints are: 1) progression-free survival (PFS), 2) NIHSS deterioration at 3 months and 6 months after surgery, 3) health-related quality of life (HRQoL) at 6 weeks, 3 months, and 6 months after surgery, and 4) frequency and severity of Serious Adverse Events (SAEs) in each arm. Estimated total duration of the study is 5 years. Patient inclusion is 4 years, follow-up is 1 year. The study has been approved by the Medical Ethics Committee (METC Zuid-West Holland/Erasmus Medical Center; MEC-2020-0812). The results will be published in peer-reviewed academic journals and disseminated to patient organisations and media.
Resection of glioblastoma in or near functional brain tissue is challenging because of the proximity of important structures to the tumor site. To pursue maximal resection in a safe manner, mapping methods have been developed to test for motor and language function during the operation. Previous evidence suggests that these techniques are beneficial for maximum safe resection in newly diagnosed grade 2-4 astrocytoma, grade 2-3 oligodendroglioma, and recently, glioblastoma. However, their effects in recurrent glioblastoma are still poorly understood. The aim of this study, therefore, is to compare the effects of awake mapping and asleep mapping with no mapping in resections for recurrent glioblastoma. This study is an international, multicenter, prospective 3-arm cohort study of observational nature. Recurrent glioblastoma patients will be operated with mapping or no mapping techniques with a 1:1 ratio. Primary endpoints are: 1) proportion of patients with NIHSS (National Institute of Health Stroke Scale) deterioration at 6 weeks, 3 months, and 6 months after surgery and 2) residual tumor volume of the contrast-enhancing and non-contrast-enhancing part as assessed by a neuroradiologist on postoperative contrast MRI scans. Secondary endpoints are: 1) overall survival (OS), 2) progression-free survival (PFS), 4) health-related quality of life (HRQoL) at 6 weeks, 3 months, and 6 months after surgery, and 4) frequency and severity of Serious Adverse Events (SAEs) in each arm. Estimated total duration of the study is 5 years. Patient inclusion is 4 years, follow-up is 1 year. The study will be carried out by the centers affiliated with the European and North American Consortium and Registry for Intraoperative Mapping (ENCRAM).
The purpose of this project is to validate a new combined MRI and PET imaging technique as a biomarker or measure of glycolysis in brain tumors. To accomplish this, the investigators propose obtaining image-guided measures of tissue pH and biopsied tissue in tumor areas selected for bulk resection surgery. Investigators will then correlate the imaging measurements with pH, RNA expression, protein expression, and bioenergetics measurements of key glycolytic enzymes.
This single center, single arm, open-label, phase I study will assess the safety of laparoscopically harvested autologous omentum, implanted into the resection cavity of recurrent glioblastoma multiforme (GBM) patients.
Clinical research can sometimes favor certain demographic groups. Additionally, there is limited research that delves into the factors that influence participation in clinical study, both positive and negative. The goal is to identify the obstacles and challenges that prevent participation in glioblastoma multiforme clinical study, as well as the reasons for withdrawal or discontinuation. Insights gained from this study will ultimately benefit those with glioblastoma multiforme who may be invited to participate in clinical trial in the years to come.
This single center, single arm, open-label, phase 2 study will assess the safety and efficacy of a pedicled temporoparietal fascial (TPF) or pericranial flap into the resection cavity of newly diagnosed glioblastoma multifome (GBM) patients. The objective of the Phase 2 study is to demonstrate that this surgical technique is safe and effective in a human cohort of patients with resected newly diagnosed AA or GBM and may improve progression-free survival (PFS) and overall survival (OS).
The purpose of this study is to establish the recommended phase 2 dose of eflornithine in combination with temozolomide in patients whose glioblastoma is newly diagnosed, and to evaluate safety and tolerability of this combination at that dose.
Brain tumor treatment is hampered by the blood-brain barrier (BBB). This barrier prevents drugs carried in the bloodstream from getting into the brain. If the BBB can be opened, making it temporarily more permeable, drugs may able to better reach the brain tumor. In this trial we will implant a novel device with 9 ultrasound emitters, allowing temporary and reversible opening of the BBB to maximize brain penetration of drugs that modulate the immune system. The device will be implanted after radiation is completed. Immune modulating drugs will be given every 3 weeks in conjunction with activation of the device to open the BBB. The objectives of this trial are to establish whether it is safe and feasible to administer immune modulating drugs in this manner, and identify whether the treatment is effective in treating glioblastoma.
To collect and preserve glioblastoma tissue during standard of care tumor resection surgery and blood for future molecular and genetic testing. Tissue for research will be collected from three different regions within the same tumor to study how these regions differ in their structure, DNA, and RNA and also to compare the data obtained from this testing to imaging data found in the medical record. The goal of this study is to help us better understand what the glioblastoma tumor tissue looks like and how it functions. This understanding can lead to new therapies for the treatment of glioblastoma in the future.
This is a Phase 2, randomized two-armed, multi-site study of 170 patients with newly diagnosed glioblastoma multiforme. Patients will be randomized 1:1 to receive Keto Diet, or Standard Anti-Cancer Diet. All patients will receive standard of care treatment for their glioblastoma. The Keto Diet intervention will be for an 18-week period and conducted by trained research dietitians. Daily ketone and glucose levels will be recorded to monitor Keto Diet adherence. This two-armed randomized multi-site study aims to provide evidence to support the hypothesis that a Keto Diet vs. Standard Anti-Cancer Diet improves overall survival in newly diagnosed glioblastoma multiforme patients who receive standard of care treatment.
This randomized study is designed to compare the combination of TVI-Brain-1 immunotherapy and standard therapy compared to standard therapy alone as a treatment for newly diagnosed MGMT unmethylated glioblastoma patients. The patients' own cancer cells collected after surgery are combined into a vaccine to produce an immune response that significantly increases the number of cancer neoantigen-specific effector T cell precursors in the patient's body. These cancer neoantigen-specific T cells are harvested from the blood, subsequently stimulated and expanded, and infused back into the patient.
This is a phase 1b study to evaluate the safety of chimeric antigen receptor (CAR) T cells with a chlorotoxin tumor-targeting domain (ie, CHM-1101, the study treatment) to determine the best dose of CHM-1101, and to assess the effectiveness of CHM-1101 in treating MMP2+ glioblastoma that has come back (recurrent) or that is growing, spreading, or getting worse (progressive).
This is an open label, non-randomized, single site Phase I study to test the manufacturing feasibility and safety of locoregional (LR) administration of B7-H3CART into the central nervous system of adult subjects with recurrent IDH wild-type GBM using a standard 3+3 dose escalation design.
This is a single-arm pilot study that will recruit 12 patients with newly diagnosed Glioblastoma, a malignant brain tumor with a poor prognosis. Patients will be treated with fractionated stereotactic radiotherapy (FSRT) for 2 weeks, in addition to two doses of Atezolizumab (Tecentriq), an FDA approved PD- L1 inhibitor drug, 840 mg IV, at the beginning and at the end of the two-week time period, concomitantly with FSRT. After this initial two weeks treatment the patients will undergo craniotomy and maximal safe resection as per normal care for a GB. After surgery patients will follow the normal care for glioblastoma in addition to Atezolizumab 840 mg IV q2 weeks for the duration of adjuvant treatment.
This study is the first step in testing the hypothesis that adding Photobac® Photodynamic Therapy to surgical removal of a glioblastoma or gliosarcoma will be both safe and effective. Photodynamic Therapy (PDT) combines light and a photosensitizer. PDT has been used to treat a variety of cancers with varying degrees of success. For the past thirty years Photolitec has been working to develop a treatment for glioblastoma or gliosarcoma using light and a photosensitizer. Photolitec's scientists were looking for a photosensitizer that: 1. has no significant systemic toxicity apart from some temporary skin photosensitivity, 2. crosses the blood brain barrier, 3. accumulates to a high level in glioblastoma and minimally in the brain, 4. is activated by the wavelength of light that penetrates most deeply into the brain, 5. minimizes any temporary skin photosensitivity. Preliminary testing indicates the Photolitec team has achieved these five goals. Photolitec is now able to offer a clinical trial based on the results of this work.
This is a phase I study to assess the safety and feasibility of IL-8 receptor modified patient-derived activated CD70 CAR T cell therapy in CD70+ adult glioblastoma
The FRONTIER Study is a prospective, interventional, single-arm, multi-center, study to assess the safety and technical feasibility of TheraSphere GBM in patients with recurrent GBM.
This clinical study to evaluate sonobiopsy is significant because sonobiopsy will fundamentally enhance the clinician's insight into the molecular features of an intracranial lesion to tailor treatment approaches and optimize outcomes. In addition to the standard diagnostics of anatomic imaging and surgical histology, sonobiopsy has the potential to become the third pillar for brain tumor management by radically advancing the ability to easily and regularly acquire tumor genetic and molecular signatures. This enhanced capability will have a dramatic impact on patient survival and quality of life.
Glioblastoma is a highly aggressive and fatal form of primary malignant brain tumor with limited treatment options. fb-PMT affects a large group of cancer cell signaling pathways and thus may be effective in heterogeneous, treatment-resistant tumors such as Glioblastoma. fb-PMT also is actively transported across the blood-brain barrier into the brain. This study is being conducted to determine the dose level for further clinical development of fb-PMT to treat recurrent Glioblastoma.
* To evaluate the safety and tolerability of escalating doses of ERAS-801 in study participants with recurrent glioblastoma multiforme (GBM). * To determine the Maximum Tolerated Dose (MTD) and/or Recommended Dose (RD) of ERAS-801. * To evaluate the antitumor activity of ERAS-801. * To evaluate the PK profile of ERAS-801.
This is a phase 1 study investigating the re-purposing of chlorpromazine, combined with temozolomide and radiation in the treatment of newly diagnosed glioblastoma multiforme.
Conduct a multicenter, open label Phase IIA trial of oral DCA in 40 surgical patients with recurrent GBM who have clinically indicated debulking surgery planned. No patients will be recruited at UF. Patients will be genotyped to establish safe dosing regimens and will be randomized to receive DCA (N=20) or no DCA (N=20) for one week prior to surgery. Deidentified blood and tumor tissue obtained at surgery will be assessed at UF for biochemical markers of DCA dynamics.
This is a Phase 1 open label, first in human study of C5252 monotherapy designed to determine the safety and tolerability of a single intratumoral (IT) injection of C5252 in patients with recurrent or progressive glioblastoma (GBM).
The purpose of the study is to evaluate the safety and survival of carmustine wafers and radiation and retifanlimab with or without temozolomide (TMZ) in newly-diagnosed adult subjects with glioblastoma multiform after carmustine wafer placement.