14 Clinical Trials for Various Conditions
The primary objective of this Phase 1, open-label, dose-escalation, and exploratory study is to evaluate the safety and tolerability profile (establish the maximum-tolerated dose) and evaluate the occurrence of dose-limiting toxicities (DLTs) following single weekly or multiple-day weekly dose regimens of single-agent, oral ONC206 in patients with recurrent, primary central nervous system (CNS) neoplasms.
Low-grade gliomas (LGGs) are the most common brain tumors in children, and a subset of these tumors are treated definitively with focal radiation therapy (RT). These patients often survive for many years after receiving RT and experience late deficits in memory. Verbal recall is an important measure of memory and is associated with other important functional outcomes, such as problem-solving, independence of every-day functioning, and quality of life. Decline in memory, as measured by verbal recall, is associated with RT dose to the hippocampi. Therefore, this phase II study investigates the feasibility of reducing RT doses to the hippocampi (i.e., hippocampal avoidance \[HA\]) by using proton therapy for midline or suprasellar LGGs. Primary Objective: * To determine the feasibility of HA with proton therapy in suprasellar or midline LGGs. Feasibility will be established if 70% of plans meet the first or second dose constraints shown below. 1. First priority RT dose constraints for bilateral hippocampi: volume receiving 40 CGE (V40CGE) ≤ 25%, dose to 100% of Hippocampus (D100%) ≤ 5CGE. 2. Second priority RT dose constraints for bilateral hippocampi: V40CGE ≤ 35%, D100% ≤ 10 CGE. Secondary Objectives: * To estimate the 3-year event-free-survival (EFS) for LGGs treated with HA. * To estimate the change in California Verbal Learning Test short-term delay (CVLT-SD) from baseline to 3 years and from baseline to 5 years * To compare CVLT-SD and Cogstate neurocognitive scores in patients with proton therapy plans that: (1) meet first priority RT dose constraints, (2) meet second priority RT dose constraints but not first priority RT dose constraints, and (3) that did not meet either first or second RT priority dose constraints Exploratory Objectives: * To describe the change in overall cognitive performance from baseline to 3 years and from baseline to 5 years with an age appropriate battery, including gold standard measures shown in the published studies to be sensitive to attention, memory processing speed and executive function that will afford comparison to historical controls. * To characterize longitudinal changes in connection strength within brain networks in the first 3 years after proton therapy and to investigate associations between these changes and neurocognitive performance with focus on the hippocampi. * To correlate the distribution and change in L-methyl-11C-methionine positron emission tomography (MET-PET) uptake to tumor progression and from baseline to 3 years and to investigate whether cases of pseudoprogression exhibit a differential pattern of uptake and distribution compared to cases of true progression after controlling for histology. * To investigate the effect of BRAF alteration, tumor histology and tumor location on PFS and OS in a prospective cohort of patients treated in a homogenous manner. * To investigate whether the methylation profiles of LGGs differ by tumor location (thalamic/midbrain vs. hypothalamic/optic pathway vs. others) and histologies (pilocytic astrocytoma vs. diffuse astrocytoma vs. others), which, in conjunction with specific genetic alterations, may stratify patients into different subgroups and highlight different therapeutic targets. * To record longitudinal measures of circulating tumor DNA (ctDNA) in plasma and correlate these measures with radiographic evidence of disease progression. * To bank formalin-fixed, paraffin-embedded (FFPE)/frozen tumors and whole blood from subjects for subsequent biology studies not currently defined in this protocol. * To quantify and characterize tumor infiltrating lymphocytes (TILs) and to characterize the epigenetics of T cells and the T cell receptor repertoire within the tumor microenvironment. * To estimate the cumulative incidence of endocrine deficiencies, vision loss, hearing loss and vasculopathy after proton therapy and compare these data to those after photon therapy.
A roll-over study to assess long-term effect in pediatric patients treated with dabrafenib and/or trametinib.
The goal of this study is to estimate the efficacy of encorafenib and binimetinib as measured by radiographic response in recurrent high-grade primary brain tumors.
This phase II trial studies how well the combination of dabrafenib and trametinib works after radiation therapy in children and young adults with high grade glioma who have a genetic change called BRAF V600 mutation. Radiation therapy uses high energy rays to kill tumor cells and reduce the size of tumors. Dabrafenib and trametinib may stop the growth of tumor cells by blocking BRAF and MEK, respectively, which are enzymes that tumor cells need for their growth. Giving dabrafenib with trametinib after radiation therapy may work better than treatments used in the past in patients with newly-diagnosed BRAF V600-mutant high-grade glioma.
The overall aim of this study is to prospectively characterize social health disparities in a cross-sectional cohort of glioma patients with attention to exploring and thematically categorizing the patient-specific and community-level factors. This will be conducted in two parts.
Approximately 90% of children with malignant brain tumors that have recurred or relapsed after receiving conventional therapy will die of disease. Despite this terrible and frustrating outcome, continued treatment of this population remains fundamental to improving cure rates. Studying this relapsed population will help unearth clues to why conventional therapy fails and how cancers continue to resist modern advances. Moreover, improvements in the treatment of this relapsed population will lead to improvements in upfront therapy and reduce the chance of relapse for all. Novel therapy and, more importantly, novel approaches are sorely needed. This trial proposes a new approach that evaluates rational combination therapies of novel agents based on tumor type and molecular characteristics of these diseases. The investigators hypothesize that the use of two predictably active drugs (a doublet) will increase the chance of clinical efficacy. The purpose of this trial is to perform a limited dose escalation study of multiple doublets to evaluate the safety and tolerability of these combinations followed by a small expansion cohort to detect preliminary efficacy. In addition, a more extensive and robust molecular analysis of all the participant samples will be performed as part of the trial such that we can refine the molecular classification and better inform on potential response to therapy. In this manner the tolerability of combinations can be evaluated on a small but relevant population and the chance of detecting antitumor activity is potentially increased. Furthermore, the goal of the complementary molecular characterization will be to eventually match the therapy with better predictive biomarkers. PRIMARY OBJECTIVES: * To determine the safety and tolerability and estimate the maximum tolerated dose/recommended phase 2 dose (MTD/RP2D) of combination treatment by stratum. * To characterize the pharmacokinetics of combination treatment by stratum. SECONDARY OBJECTIVE: * To estimate the rate and duration of objective response and progression free survival (PFS) by stratum.
The purpose of the study is to confirm the safety of the selected dose and potential toxicity of oncolytic poliovirus (PV) immunotherapy with PVSRIPO for pediatric patients with recurrent WHO grade III or IV malignant glioma, but evidence for efficacy will also be sought. The primary objective is to confirm the safety of the selected dose of PVSRIPO when delivered intracerebrally by convection-enhanced delivery (CED) in children with recurrent WHO Grade III malignant glioma (anaplastic astrocytoma, anaplastic oligoastrocytoma, anaplastic oligodendroglioma, anaplastic pleomorphic xanthoastrocytoma) or WHO Grade IV malignant glioma (glioblastoma, gliosarcoma). A secondary objective is to estimate overall survival (OS) in this population.
The purpose of this study was to investigate the activity of dabrafenib in combination with trametinib in children and adolescent patients with BRAF V600 mutation positive low grade glioma (LGG) or relapsed or refractory high grade glioma (HGG)
This pilot clinical trial studies gallium Ga 68-edotreotide (68Ga-DOTATOC) positron emission tomography (PET)/computed tomography (CT) in finding brain tumors in younger patients. Diagnostic procedures, such as gallium Ga 68-edotreotide PET/CT imaging, may help find and diagnose brain tumors.
This is a study to determine the safety and efficacy of the drug, mebendazole, when used in combination with standard chemotherapy drugs for the treatment of pediatric brain tumors. Mebendazole is a drug used to treat infections with intestinal parasites and has a long track record of safety in humans. Recently, it was discovered that mebendazole may be effective in treating cancer as well, in particular brain tumors. Studies using both cell cultures and mouse models demonstrated that mebendazole was effective in decreasing the growth of brain tumor cells. This study focuses on the treatment of a category of brain tumors called gliomas. Low-grade gliomas are tumors arising from the glial cells of the central nervous system and are characterized by slower, less aggressive growth than that of high-grade gliomas. Some low-grade gliomas have a more aggressive biology and an increased likelihood of resistance or recurrence. Low-grade gliomas are often able to be treated by observation alone if they receive a total surgical resection. However, tumors which are only partially resected and continue to grow or cause symptoms, or those which recur following total resection require additional treatment, such as chemotherapy. Due to their more aggressive nature, pilomyxoid astrocytomas, even when totally resected, will often be treated with chemotherapy. The current first-line treatment at our institution for these low-grade gliomas involves a three-drug chemotherapy regimen of vincristine, carboplatin, and temozolomide. However, based on our data from our own historical controls, over 50% of patients with pilomyxoid astrocytomas will continue to have disease progression while on this treatment. We believe that mebendazole in combination with vincristine, carboplatin, and temozolomide may provide an additional therapeutic benefit with increased progression-free and overall survival for low-grade glioma patients, particularly for those with pilomyxoid astrocytomas. High grade gliomas are more aggressive tumors with poor prognoses. The standard therapy is radiation therapy. A variety of adjuvant chemotherapeutic combinations have been used, but with disappointing results. For high-grade gliomas this study will add mebendazole to the established combination of bevacizumab and irinotecan to determine this combinations safety and efficacy
RATIONALE: Imetelstat sodium may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. PURPOSE: This phase I clinical trial is studying the side effects and best dose of imetelstat sodium in treating young patients with refractory or recurrent solid tumors or lymphoma.
RATIONALE: Photodynamic therapy uses light and photosensitizing drugs to kill tumor cells and may be an effective treatment for refractory brain tumors. PURPOSE: This phase I trial is studying the side effects and best dose of photodynamic therapy using porfimer sodium in treating patients with refractory brain tumors, including astrocytoma, ependymoma, and medulloblastoma.
RATIONALE: Cyproheptadine hydrochloride may prevent weight loss caused by cancer or cancer treatment. It is not yet known whether cyproheptadine is more effective than a placebo in preventing weight loss in young patients receiving chemotherapy for cancer. PURPOSE: This randomized phase III trial is studying cyproheptadine hydrochloride to see how well it works in preventing weight loss in young patients receiving chemotherapy for cancer.