Treatment Trials

54 Clinical Trials for Various Conditions

Focus your search

COMPLETED
External Beam Radiation Therapy and Cetuximab Followed by Irinotecan and Cetuximab for Children and Young Adults With Newly Diagnosed Diffuse Pontine Tumors and High-Grade Astrocytomas
Description

Standard treatment for patients with diffuse pontine tumors is radiation therapy, but less than 10% of patients are cured. Adding standard chemotherapy has not improved the cure rate. Standard treatment for high-grade astrocytomas is surgery and radiation. The surgeon removes as much of the tumor as she or he can. Radiation after that tries to kill any cancer cells that are left. Some patients also get chemotherapy. These are anti-cancer drugs. They can be given during or after radiation. Current standard treatments do not cure many patients. In this study the doctors are adding a new medication called cetuximab to the treatment and will also use a chemotherapy medication (irinotecan) that has been promising for patients treated for recurrent disease.

Conditions
TERMINATED
Study of Dasatinib in Combination With Everolimus for Children and Young Adults With Gliomas Harboring Platelet-Derived Growth Factor Receptor (PDGFR) Alterations
Description

This trial will evaluate the activity of dasatinib in combination with everolimus for children with gliomas harboring PDGFR alterations, including newly diagnosed high-grade glioma (HGG) or diffuse intrinsic pontine glioma (DIPG) after radiation (stratum A); and recurrent/progressive glioma (grade II-IV, including DIPG) (stratum B).

TERMINATED
Phase I Rindopepimut After Conventional Radiation in Children w/ Diffuse Intrinsic Pontine Gliomas
Description

This is a research study of patients with diffuse intrinsic pontine gliomas. We hope to learn about the safety and efficacy of treating pediatric diffuse intrinsic pontine glioma patients with the EGFRvIII peptide vaccine after conventional radiation.

ACTIVE_NOT_RECRUITING
Pembrolizumab in Treating Younger Patients With Recurrent, Progressive, or Refractory High-Grade Gliomas, Diffuse Intrinsic Pontine Gliomas, Hypermutated Brain Tumors, Ependymoma or Medulloblastoma
Description

This phase I trial studies the side effects and best dose of pembrolizumab and to see how well it works in treating younger patients with high-grade gliomas (brain tumors that are generally expected to be fast growing and aggressive), diffuse intrinsic pontine gliomas (brain stem tumors), brain tumors with a high number of genetic mutations, ependymoma or medulloblastoma that have come back (recurrent), progressed, or have not responded to previous treatment (refractory). Immunotherapy with monoclonal antibodies, such as pembrolizumab, may induce changes in the body's immune system, and may interfere with the ability of tumor cells to grow and spread.

RECRUITING
Testing the Addition of an Anti-Cancer Drug, AZD1390, During Radiation Therapy for Newly Diagnosed High Grade Glioma, Diffuse Midline Glioma, or Diffuse Intrinsic Pontine Glioma
Description

This phase I clinical trial studies the side effects and best dose of AZD1390 and to see how well it works when given together with radiation therapy for the treatment of pediatric patients with high grade glioma, diffuse midline glioma or diffuse intrinsic pontine glioma. AZD1390 is in a class of medications called kinase inhibitors. It works by blocking the signals that cause cancer cells to multiply. This helps to stop the spread of cancer cells. Radiation therapy uses high energy x-rays, particles, or radioactive seeds to kill cancer cells and shrink tumors. Giving AZD1390 with radiation may be safe, tolerable, and/or effective in treating pediatric patients with high grade glioma, diffuse midline glioma or diffuse intrinsic pontine glioma.

RECRUITING
Atovaquone Combined with Radiation in Children with Malignant Brain Tumors
Description

The goal of this interventional study is to Assess the safety and tolerability of atovaquone in combination with standard radiation therapy (RT) for the treatment of pediatric patients with newly diagnosed pediatric high-grade glioma/diffuse midline glioma/diffuse intrinsic pontine glioma (pHGG/DMG/DIPG). The secondary aim is to assess the safety and tolerability of longer-term atovaquone treatment for pediatric patients with relapsed or progressed pHGG/DMG/DIPG and medulloblastoma (MB) or pHGG/DMG/DIPG after completion of RT and before progression.

RECRUITING
Study of B7-H3, EGFR806, HER2, And IL13-Zetakine (Quad) CAR T Cell Locoregional Immunotherapy For Pediatric Diffuse Intrinsic Pontine Glioma, Diffuse Midline Glioma, And Recurrent Or Refractory Central Nervous System Tumors
Description

This is a Phase 1 study of central nervous system (CNS) locoregional adoptive therapy with SC-CAR4BRAIN, an autologous CD4+ and CD8+ T cells lentivirally transduced to express to express combinations of B7-H3, EGFR806, HER2, and IL13-zetakine chimeric antigen receptors (CAR). CAR T cells are delivered via an indwelling catheter into the ventricular system in children and young adults with diffuse intrinsic pontine glioma (DIPG), diffuse midline glioma (DMG), and recurrent or refractory CNS tumors. A child or young adult meeting all eligibility criteria, including having a CNS catheter placed into their ventricular system, and meeting none of the exclusion criteria will have their T cells collected. The T cells will then be bioengineered into a second-generation CAR T cell that target B7H3, EGFR806, HER2, and IL13-zetakine on tumor cells. Patients will be assigned to 1 of 2 treatment Arms based on the type of their tumor: * Arm A is for patients with DIPG (meaning primary disease localized to the pons, metastatic disease is allowed) anytime after standard radiation OR after progression. * Arm B is for patients with non-pontine DMG (meaning DMG in other parts of the brain such as the thalamus or spine) anytime after standard radiation OR after progression. This Arm also includes other recurrent/refractory CNS tumors.

RECRUITING
Lutathera for Treatment of Recurrent or Progressive High-Grade CNS Tumors
Description

This study will evaluate the safety and efficacy of Lutathera (177Lu-DOTATATE) in patients with progressive or recurrent High-Grade Central Nervous System (CNS) tumors and meningiomas that demonstrate uptake on DOTATATE PET. The drug will be given intravenously once every 8 weeks for a total of up to 4 doses over 8 months in patients aged 4 to \<12 years (Phase I) or 12 to \</=39 years (Phase II) to test its safety and efficacy, respectively. Funding Source - FDA OOPD (grant number FD-R-0532-01)

RECRUITING
CBL0137 for the Treatment of Relapsed or Refractory Solid Tumors, Including CNS Tumors and Lymphoma
Description

This phase I/II trial evaluates the best dose, side effects and possible benefit of CBL0137 in treating patients with solid tumors, including central nervous system (CNS) tumors or lymphoma that has come back (relapsed) or does not respond to treatment (refractory). Drugs, such as CBL0137, block signals passed from one molecule to another inside a cell. Blocking these signals can affect many functions of the cell, including cell division and cell death, and may kill cancer cells.

ACTIVE_NOT_RECRUITING
A Study of BXQ-350 in Children With Newly Diagnosed Diffuse Intrinsic Pontine Glioma (DIPG) or Diffuse Midline Glioma (DMG)
Description

This study will evaluate the safety of BXQ-350 and determine the maximum tolerated dose (MTD) in children with newly diagnosed DIPG or DMG. All patients will receive BXQ-350 by intravenous (IV) infusion and radiation therapy. The study is divided into two parts: Part 1 will enroll patients at increasing dose levels of BXQ-350 in order to determine the MTD. Part 2 will enroll patients requiring a biopsy in order to assess BXQ-350 concentrations in the biopsied tumor.

TERMINATED
A Study of Bempegaldesleukin (BEMPEG: NKTR-214) in Combination With Nivolumab in Children, Adolescents and Young Adults With Recurrent or Treatment-resistant Cancer
Description

The purpose of this study is to first, in Part A, assess the safety, tolerability and drug levels of Bempegaldesleukin (BEMPEG) in combination with nivolumab and then, in Part B, to estimate the preliminary efficacy in children, adolescents and young adults with recurrent or treatment-resistant cancer.

RECRUITING
9-ING-41 in Pediatric Patients with Refractory Malignancies.
Description

9-ING-41 has anti-cancer clinical activity with no significant toxicity in adult patients. This Phase 1 study will study its efficacy in paediatric patients with advanced malignancies.

ACTIVE_NOT_RECRUITING
A Study of Abemaciclib (LY2835219) in Combination With Other Anti-Cancer Treatments in Children and Young Adult Participants With Solid Tumors, Including Neuroblastoma
Description

The study's purpose is to see if the drug, abemaciclib, is safe and effective when given with other drugs to kill cancer cells. The study is open to children and young adults with solid tumors, including neuroblastoma, that did not respond or grew during other anti-cancer treatment. For each participant, the study is estimated to last up to 2 years.

RECRUITING
Study of B7-H3-Specific CAR T Cell Locoregional Immunotherapy for Diffuse Intrinsic Pontine Glioma/Diffuse Midline Glioma and Recurrent or Refractory Pediatric Central Nervous System Tumors
Description

This is a Phase 1 study of central nervous system (CNS) locoregional adoptive therapy with autologous CD4+ and CD8+ T cells lentivirally transduced to express a B7H3-specific chimeric antigen receptor (CAR) and EGFRt. CAR T cells are delivered via an indwelling catheter into the tumor resection cavity or ventricular system in children and young adults with diffuse intrinsic pontine glioma (DIPG), diffuse midline glioma (DMG), and recurrent or refractory CNS tumors. A child or young adult meeting all eligibility criteria, including having a CNS catheter placed into the tumor resection cavity or into their ventricular system, and meeting none of the exclusion criteria, will have their T cells collected. The T cells will then be bioengineered into a second-generation CAR T cell that targets B7H3-expressing tumor cells. Patients will be assigned to one of 3 treatment arms based on location or type of their tumor. Patients with supratentorial tumors will be assigned to Arm A, and will receive their treatment into the tumor cavity. Patients with either infratentorial or metastatic/leptomeningeal tumors will be assigned to Arm B, and will have their treatment delivered into the ventricular system. The first 3 patients enrolled onto the study must be at least 15 years of age and assigned to Arm A or Arm B. Patients with DIPG will be assigned to Arm C and have their treatment delivered into the ventricular system. The patient's newly engineered T cells will be administered via the indwelling catheter for two courses. In the first course patients in Arms A and B will receive a weekly dose of CAR T cells for three weeks, followed by a week off, an examination period, and then another course of weekly doses for three weeks. Patients in Arm C will receive a dose of CAR T cells every other week for 3 weeks, followed by a week off, an examination period, and then dosing every other week for 3 weeks. Following the two courses, patients in all Arms will undergo a series of studies including MRI to evaluate the effect of the CAR T cells and may have the opportunity to continue receiving additional courses of CAR T cells if the patient has not had adverse effects and if more of their T cells are available. The hypothesis is that an adequate amount of B7H3-specific CAR T cells can be manufactured to complete two courses of treatment with 3 or 2 doses given on a weekly schedule followed by one week off in each course. The other hypothesis is that B7H3-specific CAR T cells can safely be administered through an indwelling CNS catheter or delivered directly into the brain via indwelling catheter to allow the T cells to directly interact with the tumor cells for each patient enrolled on the study. Secondary aims of the study will include evaluating CAR T cell distribution with the cerebrospinal fluid (CSF), the extent to which CAR T cells egress or traffic into the peripheral circulation or blood stream, and, if tissues samples from multiple timepoints are available, also evaluate disease response to B7-H3 CAR T cell locoregional therapy.

RECRUITING
C7R-GD2.CAR T Cells for Patients With GD2-expressing Brain Tumors (GAIL-B)
Description

In this study, there are two treatment groups called Cohort 1 and Cohort 2. Cohort 1 is for patients with diffuse midline glioma, high grade glioma, diffuse intrinsic pontine glioma, medulloblastoma, or another rare brain cancer that expresses GD2. Cohort 2 is for patients with a type of cancer called progressive pontine diffuse midline glioma (DMG), high grade glioma or diffuse intrinsic pontine glioma that expresses GD2. Because there is no standard treatment at this time, patients are asked to volunteer in a gene transfer research study using special immune cells called T cells. T cells are a type of white blood cell that help the body fight infection. This research study combines two different ways of fighting cancer: antibodies and T cells. Both antibodies and T cells have been used to treat cancer patients. They have shown promise but have not been strong enough to cure most patients. Researchers have found from previous research that they can put a new antibody gene into T cells that will make them recognize cancer cells and kill them. GD2 is a protein found on several different cancers. Researchers testing brain cancer cells found that many of these cancers also have GD2 on their surface. In a study for neuroblastoma in children, a gene called a chimeric antigen receptor (CAR) was made from an antibody that recognizes GD2. This gene was put into the patients own T cells and given back to 11 patients. The cells did grow for a while but started to disappear from the blood after 2 weeks. The researchers think that if T cells are able to last longer they may have a better chance of killing tumor cells. In this study, a new gene will be added to the GD2 T cells that can cause the cells to live longer. T cells need substances called cytokines to survive. The gene C7R has been added that gives the cells a constant supply of cytokine and helps them to survive for a longer period of time. In other studies using T cells researchers found that giving chemotherapy before the T cell infusion can improve the amount of time the T cells stay in the body and therefore the effect the T cells can have. This is called lymphodepletion and it will allow the T cells to expand and stay longer in the body and potentially kill cancer cells more effectively. After treating 11 patients, the largest safe dose of GD2-CAR T cells given in the vein (IV) was determined. Going forward, we will combine IV infusions with infusions directly into the brain through the Ommaya reservoir or programmable VP shunt. The goal is to find the largest safe dose of GD2-C7R T cells that can be administered in this way. Patients will now be assigned to Cohort 1 and 2 based on their tumor type with different dose levels for each cohort. The GD2.C7R T cells are an investigational product not approved by the FDA. The purpose of this study is to combine infusions into the vein in the first treatment cycle with infusions directly into the cerebrospinal fluid (CSF) in the brain (intracerebroventricularly) through the ommaya reservoir or programmable VP shunt for the second infusion cycle and possibly additional infusions after that. The goal is to find the largest safe dose of GD2-C7R T cells that can be administered in this way, and additionally to evaluate how long they can be detected in the blood and CSF and what affect they have on brain cancer.

RECRUITING
Pediatric Trial of Indoximod with Chemotherapy and Radiation for Relapsed Brain Tumors or Newly Diagnosed DIPG
Description

Indoximod was developed to inhibit the IDO (indoleamine 2,3-dioxygenase) enzymatic pathway, which is important in the natural regulation of immune responses. This potent immune suppressive mechanism has been implicated in regulating immune responses in settings as diverse as infection, tissue/organ transplant, autoimmunity, and cancer. By inhibiting the IDO pathway, we hypothesize that indoximod will improve antitumor immune responses and thereby slow the growth of tumors. The central clinical hypothesis for the GCC1949 study is that inhibiting the pivotal IDO pathway by adding indoximod immunotherapy during chemotherapy and/or radiation is a potent approach for breaking immune tolerance to pediatric tumors that will improve outcomes, relative to standard therapy alone. This is an NCI-funded (R01 CA229646, MPI: Johnson and Munn) open-label phase 2 trial using indoximod-based combination chemo-radio-immunotherapy for treatment of patients age 3 to 21 years who have progressive brain cancer (glioblastoma, medulloblastoma, or ependymoma), or newly-diagnosed diffuse intrinsic pontine glioma (DIPG). Statistical analysis will stratify patients based on whether their treatment plan includes up-front radiation (or proton) therapy in combination with indoximod. Central review of tissue diagnosis from prior surgery is required, except non-biopsied DIPG. This study will use the "immune-adapted Response Assessment for Neuro-Oncology" (iRANO) criteria for measurement of outcomes. Planned enrollment is up to 140 patients.

ACTIVE_NOT_RECRUITING
Fimepinostat in Treating Brain Tumors in Children and Young Adults
Description

This trial studies how well fimepinostat works in treating patients with newly diagnosed diffuse intrinsic pontine glioma, or medulloblastoma, or high-grade glioma that have come back. Fimepinostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

ACTIVE_NOT_RECRUITING
Study Of Palbociclib Combined With Chemotherapy In Pediatric Patients With Recurrent/Refractory Solid Tumors
Description

A study to learn about safety and find out maximum tolerable dose of palbociclib given in combination with chemotherapy (temozolomide with irinotecan or topotecan with cyclophosphamide) in children, adolescents and young adults with recurrent or refractory solid tumors (phase 1). Neuroblastoma tumor specific cohort to further evaluate antitumor activity of palbociclib in combination with topotecan and cyclophosphamide in children, adolescents, and young adults with recurrent or refractory neuroblastoma. Phase 2 to learn about the efficacy of palbociclib in combination with irinotecan and temozolomide when compared with irinotecan and temozolomide alone in the treatment of children, adolescents, and young adults with recurrent or refractory Ewing sarcoma (EWS).

COMPLETED
Study of GDC-0084 in Pediatric Patients With Newly Diagnosed Diffuse Intrinsic Pontine Glioma or Diffuse Midline Gliomas
Description

Pediatric high-grade gliomas are highly aggressive and treatment options are limited. The purpose of this first-in-pediatrics study is to examine the safety, tolerability, and pharmacokinetics of GDC-0084 and to estimate its maximum tolerated dose (MTD) when administered to pediatric patients with diffuse intrinsic pontine glioma (DIPG) or other diffuse midline H3 K27M-mutant gliomas after they have received radiation therapy (RT). GDC-0084 is a brain-penetrant inhibitor of a growth-promoting cell signaling pathway that is dysregulated in the majority of diffuse midline glioma tumor cells. This study is also designed to enable a preliminary assessment of the antitumor activity of single-agent GDC-0084, in the hope of enabling rational combination therapy with systemic therapy and/or radiation therapy (RT) in this patient population, which is in desperate need of therapeutic advances. Primary Objectives 1. To estimate the maximum tolerated dose (MTD) and/or the recommended phase 2 dosage (RP2D) of GDC-0084 in pediatric patients with newly diagnosed diffuse midline glioma, including diffuse intrinsic pontine glioma (DIPG) 2. To define and describe the toxicities associated with administering GDC-0084 after radiation therapy (RT) in a pediatric population 3. To characterize the pharmacokinetics of GDC-0084 in a pediatric population Secondary Objectives 1. To estimate the rate and duration of radiographic response in patients with newly diagnosed DIPG or other diffuse midline glioma treated with RT followed by GDC-0084 2. To estimate the progression-free survival (PFS) and overall survival (OS) distributions for patients with newly diagnosed DIPG or other diffuse midline glioma treated with RT followed by GDC-0084

TERMINATED
REGN2810 in Pediatric Patients With Relapsed, Refractory Solid, or Central Nervous System (CNS) Tumors and Safety and Efficacy of REGN2810 in Combination With Radiotherapy in Pediatric Patients With Newly Diagnosed or Recurrent Glioma
Description

Phase 1: * To confirm the safety and anticipated recommended phase 2 dose (RP2D) of REGN2810 (cemiplimab) for children with recurrent or refractory solid or Central Nervous System (CNS) tumors * To characterize the pharmacokinetics (PK) of REGN2810 given in children with recurrent or refractory solid or CNS tumors Phase 2 (Efficacy Phase): * To confirm the safety and anticipated RP2D of REGN2810 to be given concomitantly with conventionally fractionated or hypofractionated radiation among patients with newly diagnosed diffuse intrinsic pontine glioma (DIPG) * To confirm the safety and anticipated RP2D of REGN2810 given concomitantly with conventionally fractionated or hypofractionated radiation among patients with newly diagnosed high-grade glioma (HGG) * To confirm the safety and anticipated RP2D of REGN2810 given concomitantly with re-irradiation in patients with recurrent HGG * To assess PK of REGN2810 in pediatric patients with newly diagnosed DIPG, newly diagnosed HGG, or recurrent HGG when given in combination with radiation * To assess anti-tumor activity of REGN2810 in combination with radiation in improving overall survival at 12 months (OS12) among patients with newly diagnosed DIPG * To assess anti-tumor activity of REGN2810 in combination with radiation in improving progression-free survival at 12 months (PFS12) among patients with newly diagnosed HGG * To assess anti-tumor activity of REGN2810 in combination with radiation in improving overall survival at OS12 among patients with recurrent HGG

ACTIVE_NOT_RECRUITING
Volitinib in Treating Patients With Recurrent or Refractory Primary CNS Tumors
Description

This phase I trial studies the side effects and best dose of volitinib in treating patients with primary central nervous system (CNS) tumors that have come back (recurrent) or does not respond to treatment (refractory). Volitinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

COMPLETED
Feasibility and Preliminary Efficacy of a Mindfulness-based Intervention for Children and Young Adults With High Grade or High-Risk Cancer and Their Caregivers
Description

Background: People cope with cancer in different ways. Mindfulness means focusing on the present moment with an open mind. Researchers want to see if this can help children and young adults with a high-grade high-risk cancer with poor prognosis. Objective: To learn if mindfulness is feasible and acceptable for children and young people with high-grade high-risk cancer with poor prognosis and their caregivers. Eligibility: Children ages 5-24 with a high-grade or high-risk cancer, with a caregiver who agrees to do the study Must have internet access (participants may borrow an iPod for the study) Must speak English Design: All participants will complete questionnaires. These will be about feelings, physical well-being, quality of life, and mindfulness. Researchers will review children's medical records. Participants will be randomly put in the mindfulness group or the standard care group. Participants in the standard care group will: Get general recommendations for coping with cancer Have check-in sessions 1 and 3 weeks after starting. These will last about 10 minutes each. After participants finish the standard care group, they may be able to enroll in the mindfulness group. Participants in the mindfulness group will: Attend an in-person mindfulness training session. The child participant will meet with one research team member for 90 minutes while the parent participant meets with another. Then they will come together for a half hour. Practice mindfulness exercises at least 4 days a week for 8 weeks. Be asked to respond to weekly emails or texts asking about their mindfulness practice Get a mindfulness kit with things to help them do their mindfulness activities at home. Have a 30-minute check-in with their coach 1 and 3 weeks after starting. This can be in person or by video chat. All participants (from both groups) will be asked to answer follow-up questions about 8 and 16 weeks after starting the study. Participants will be paid $20 for each set of questionnaires they complete to thank them for their time. ...

ACTIVE_NOT_RECRUITING
Dose Escalation Study of CLR 131 in Children, Adolescents, and Young Adults With Relapsed or Refractory Malignant Tumors Including But Not Limited to Neuroblastoma, Rhabdomyosarcoma, Ewings Sarcoma, and Osteosarcoma
Description

The study evaluates CLR 131 in children, adolescents, and young adults with relapsed or refractory malignant solid tumors and lymphoma and recurrent or refractory malignant brain tumors for which there are no standard treatment options with curative potential.

ACTIVE_NOT_RECRUITING
Phase I Study of APX005M in Pediatric Central Nervous System Tumors
Description

This phase I trial studies the side effects and best dose of APX005M in treating younger patients with primary malignant central nervous system tumor that is growing, spreading, or getting worse (progressive), or newly diagnosed diffuse intrinsic pontine glioma. APX005M can trigger activation of B cells, monocytes, and dendritic cells and stimulate cytokine release from lymphocytes and monocytes. APX005M can mediate a direct cytotoxic effect on CD40+ tumor cells.

COMPLETED
Ribociclib and Everolimus in Treating Children With Recurrent or Refractory Malignant Brain Tumors
Description

This phase I trial studies the side effects and best dose of ribociclib and everolimus and to see how well they work in treating patients with malignant brain tumors that have come back or do not respond to treatment. Ribociclib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as everolimus, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving ribociclib and everolimus may work better at treating malignant brain tumors.

TERMINATED
A Study of Ad-RTS-hIL-12 + Veledimex in Pediatric Subjects With Brain Tumors Including DIPG
Description

This research study involves an investigational product: Ad-RTS-hIL-12 given with veledimex for production of human IL-12. IL-12 is a protein that can improve the body's natural response to disease by enhancing the ability of the immune system to kill tumor cells and may interfere with blood flow to the tumor. The main purpose of this study is to evaluate the safety and tolerability of a single tumor injection of Ad-RTS-hIL-12 given with oral veledimex in the pediatric population.

COMPLETED
A Study of Pomalidomide Monotherapy for Children and Young Adults With Recurrent or Progressive Primary Brain Tumors
Description

This study will assess the efficacy, safety and tolerability of pomalidomide in children and young adults aged 1 to \< 21 years with recurrent or progressive primary brain tumors in one of four primary brain tumor types: high-grade glioma (HGG), medulloblastoma, ependymoma and diffuse intrinsic pontine glioma (DIPG).

ACTIVE_NOT_RECRUITING
Study Of Entrectinib (Rxdx-101) in Children and Adolescents With Locally Advanced Or Metastatic Solid Or Primary CNS Tumors And/Or Who Have No Satisfactory Treatment Options
Description

This is an open-label, Phase 1/2 multicenter dose escalation study in pediatric patients with relapsed or refractory extracranial solid tumors (Phase 1), with additional expansion cohorts (Phase 2) in patients with primary brain tumors harboring NTRK1/2/3 or ROS1 gene fusions, and extracranial solid tumors harboring NTRK1/2/3 or ROS1 gene fusions.

COMPLETED
Abemaciclib in Children With DIPG or Recurrent/Refractory Solid Tumors
Description

This is a Phase I clinical trial evaluating abemaciclib (LY2835219), an inhibitor of cyclin dependent-kinases 4 and 6 (Cdk 4/6) in children and young adults with newly diagnosed diffuse intrinsic pontine glioma (DIPG) (Stratum A) and in relapsed/refractory/progressive malignant brain (Grade III/IV, including DIPG; MBT) and solid tumor (ST) patients (Stratum B).

COMPLETED
Phase I Study of Mebendazole Therapy for Recurrent/Progressive Pediatric Brain Tumors
Description

This is a safety (Phase 1) trial using mebendazole for recurrent pediatric brain cancers that include medulloblastoma and high grade glioma, that are no longing responding to standard therapies. The drug mebendazole is an oral drug in a chewable 500 mg orange flavored tablet. It is already approved to treat parasitic infections. The purpose of this study is to determine the safety and side effects for increasing doses of mebendazole, followed by the treatment of an additional 12 patients at the best tolerated dose.