1,304 Clinical Trials for Various Conditions
The purpose of this research is to test the safety and effectiveness of the investigational drug ruxolitinib when it is combined with standard of care treatment (radiation therapy and temozolomide) for the treatment of newly diagnosed glioblastoma. Half the people in the study will be assigned to take the study drug ruxolitinib in addition to the standard of care temozolomide and radiation therapy and the other half will be assigned to the standard of care temozolomide and radiation therapy only. This assignment will be randomized in a 1-to-1 ratio, like the flip of a coin.
The researchers are doing this study to find out whether the drugs ABBV-637 and ABBV-155 are safe treatments that cause few or mild side effects when given alone or in combination with ERAS-801 in people with recurrent GBM.
The goal of this study is to evaluate the safety of the experimental drug, CUE-102, and establish the recommended dose of CUE-102 for participants with Recurrent Glioblastoma (GBM). The name of the study drug involved in this study is: -CUE-102 (a type of fusion protein)
Preclinical data have demonstrated the combination of azeliragon, a RAGE inhibitor, with radiation therapy (RT) can effectively reduce immune-suppressive myeloid cells and restore T-cell activation to improve tumor control in murine glioma models. Ongoing clinical studies of azeliragon with RT alone and RT plus temozolomide (TMZ) to treat patients with newly diagnosed glioblastoma (GBM) have demonstrated safety and tolerability. The purpose of this window-of-opportunity study is to validate that the combination of azeliragon with RT and TMZ would modulate immune-suppressive myeloid and T cells in the tumor microenvironment in patients with GBM.
The body has different ways of fighting infection and disease. No single way seems perfect for fighting cancers. This research study combines two different ways of fighting cancer: antibodies and T cells. Antibodies are types of proteins that protect the body from infectious diseases and possibly cancer. T-cells, also called T lymphocytes, are special infection-fighting blood cells that can kill other cells, including cells infected with viruses and tumor cells. Both antibodies and T cells have been used to treat participants with cancers. They have shown promise, but have not been strong enough to cure most participants. The study team has found from previous research that we can put a new gene (a tiny part of what makes-up DNA and carries the participants traits) into T cells that will make them recognize cancer cells and kill them. In the lab, the study team has made several genes called a chimeric antigen receptor (CAR), from an antibody called GC33. The antibody GC33 recognizes a protein found on the participants brain tumor. This CAR is called GPC3-CAR. To make this CAR more effective, the study has also added a gene that includes IL15. IL15 is a protein that helps CAR T cells grow better and stay in the blood longer so that they may kill tumors better. The mixture of GPC3-CAR and IL15 killed tumor cells better in the laboratory when compared with CAR T cells that did not have IL15. This study will test T cells with the IL15 GPC3-CAR (GO-CART T cells) in participants with GPC3-positive brain tumors. T cells made to carry a gene called iCasp9 can be killed when they encounter a specific drug called AP1903. The study team will insert the iCasp9 and IL15 together into the T cells using a virus that has been made for this study. The drug (AP1903) is an experimental drug that has been tested in humans with no bad side-effects. The study team will use this drug to kill the T cells if necessary due to side effects. This study will test T cells genetically engineered with a GPC3-CAR and IL15 (GO-CART T cells) in participants with GPC3-positive brain tumors. The GO-CART T cells are an investigational product not approved by the Food and Drug Administration.
The goal of Phase 1 of this clinical research study is to find the highest tolerable dose and the recommended Phase 2 dose of ivonescimab that can be given to patients who have recurrent glioblastoma. The goal of Phase 2 of this clinical research study is to learn if the recommended Phase 2 dose of ivonescimab found in Phase 1 can help to control the disease.
This research study involves the study of granulocyte colony stimulating factor (G-CSF) in patients with MGMT-methylated glioblastoma multiforme (GBM) that are undergoing standard chemoradiation. The study aims to evaluate G-CSF's effects on brain health and cognitive function. The name of the study drugs involved in this study are: * G-CSF (also called Filgrastim) * Temozolomide (TMZ), a standard of care chemotherapy drug
The goal of this observational study is to find out what factors affect the health and risks in adults with glioblastoma (GBM), a grade 4 brain cancer. The main questions it aims to answer are: * How do genetic and immune system factors impact survival and quality of life in GBM patients? * What occupational and medical history factors are linked to the risk of getting GBM? Participants will: * Fill out an online survey about their medical history and lifestyle. Participants will have the chance to give a blood sample (from the outer arm) for genetic and immune system testing. Blood samples will be given using a home collection kit provided by the study team.
* To perform metabolic phenotyping of treatment naïve and recurrent GBM by multitracer \[18F\]Fluciclovine and 18F-FDG PET. * To compare uptake measures of 18F-Fluciclovine and 18F-FDG and MRI quantification of glutamate and lactate levels to tumor tissue laboratory assays (RNA seq and proteomics) of glutamine/glutamate, glucose, and lactate metabolism. * To perform metabolic phenotyping of treatment naïve and recurrent GBM by advanced MRI methods at 7 Tesla
This is a multicenter, two-arm, randomized, double-blind, placebo-controlled study of Optune® (Tumor Treating Fields at 200 kHz) together with maintenance Temozolomide (TMZ) chemotherapy agent and pembrolizumab compared to Optune® together with maintenance TMZ and placebo in newly diagnosed Glioblastoma (GBM) patients. The primary objective of the study is to evaluate the Overall Survival (OS).
This research study is studying troriluzole as a possible treatment for recurrent glioblastoma. The name of the study drug involved in this research study is: -Troriluzole (a tripeptide prodrug of riluzole)
Magnetic resonance imaging, MRI, is a procedure that uses radio waves, a powerful magnet, and a computer to make a series of detailed pictures of areas inside the body. The goal of this study is to determine if MR fingerprinting, new way of acquiring MRI images, can help identify the extent of tumor spread in the brain, better than routine MRI images.
This phase III trial compares pH weighted chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI)-based surgical resections to standard of care surgical resections for the treatment of patients with glioblastoma. Standard of care therapy for glioblastoma is surgery to remove tumor tissue that enhances on standard MRI imaging, however, it has been shown that significant tumor burden exists in the region around the tumor tissue that does not enhance with standard MRI. MRI is a procedure in which radio waves and a powerful magnet linked to a computer are used to create detailed pictures of areas inside the body. These pictures can show the difference between normal and tumor tissue. CEST MRI is a technique that uses differences in the tissue environment, like protein concentration or intracellular pH, to generate contrast differences. CEST MRI may identify tumor tissue that does not enhance with standard of care MRI. PH weighted CEST MRI based surgical resection may be more effective compared to standard of care surgical resection in treating patients with glioblastoma.
The goal of this Phase 3 clinical trial is to compare the efficacy of niraparib versus temozolomide (TMZ) in adult participants with newly-diagnosed, MGMT unmethylated glioblastoma multiforme (GBM). The main questions it aims to answer are: Does niraparib improve progression-free survival (PFS) compared to TMZ? Does niraparib improve overall survival (OS) compared to TMZ? Participants will be randomly assigned to one of two treatment arms: niraparib or TMZ. * study drug (Niraparib) or * comparator drug (Temozolomide - which is the standard approved treatment for MGMT unmethylated glioblastoma). The study medication will be taken daily while receiving standard of care radiation therapy (RT) for 6-7 weeks. Participants may continue to take the niraparib or TMZ adjuvantly as long as the cancer does not get worse or completion of 6 cycles of treatment (TMZ). A total of 450 participants will be enrolled in the study. Participants' tasks will include: * Complete study visits as scheduled * Complete a diary to record study medication
The trial aims to collect safety, efficacy, exposure, dose- response, pharmacokinetic and pharmacodynamic information of the combination of L19TNF and lomustine at different dose levels in patients with Glioblastoma at progression or recurrence
This will be a prospective, open-label, single-arm pilot study to investigate the safety and efficacy of Bevacizumab (BEV) in combination with microbubble (MB)-mediated FUS in patients with recurrent GBM. BEV represents the physician's best choice for the standard of care (SoC) in rGBM after previous treatment with surgery (if appropriate), standard radiotherapy with temozolomide chemotherapy, and with adjuvant temozolomide.
Previous evidence has indicated that resection for recurrent glioblastoma might benefit the prognosis of these patients in terms of overall survival. However, the demonstrated safety profile of this approach is contradictory in the literature and the specific benefits in distinct clinical and molecular patient subgroups remains ill-defined. The aim of this study, therefore, is to compare the effects of resection and best oncological treatment for recurrent glioblastoma as a whole and in clinically important subgroups. This study is an international, multicenter, prospective observational cohort study. Recurrent glioblastoma patients will undergo tumor resection or best oncological treatment at a 1:1 ratio as decided by the tumor board. Primary endpoints are: 1) proportion of patients with NIHSS (National Institute of Health Stroke Scale) deterioration at 6 weeks after surgery and 2) overall survival. Secondary endpoints are: 1) progression-free survival (PFS), 2) NIHSS deterioration at 3 months and 6 months after surgery, 3) health-related quality of life (HRQoL) at 6 weeks, 3 months, and 6 months after surgery, and 4) frequency and severity of Serious Adverse Events (SAEs) in each arm. Estimated total duration of the study is 5 years. Patient inclusion is 4 years, follow-up is 1 year. The study has been approved by the Medical Ethics Committee (METC Zuid-West Holland/Erasmus Medical Center; MEC-2020-0812). The results will be published in peer-reviewed academic journals and disseminated to patient organisations and media.
Resection of glioblastoma in or near functional brain tissue is challenging because of the proximity of important structures to the tumor site. To pursue maximal resection in a safe manner, mapping methods have been developed to test for motor and language function during the operation. Previous evidence suggests that these techniques are beneficial for maximum safe resection in newly diagnosed grade 2-4 astrocytoma, grade 2-3 oligodendroglioma, and recently, glioblastoma. However, their effects in recurrent glioblastoma are still poorly understood. The aim of this study, therefore, is to compare the effects of awake mapping and asleep mapping with no mapping in resections for recurrent glioblastoma. This study is an international, multicenter, prospective 3-arm cohort study of observational nature. Recurrent glioblastoma patients will be operated with mapping or no mapping techniques with a 1:1 ratio. Primary endpoints are: 1) proportion of patients with NIHSS (National Institute of Health Stroke Scale) deterioration at 6 weeks, 3 months, and 6 months after surgery and 2) residual tumor volume of the contrast-enhancing and non-contrast-enhancing part as assessed by a neuroradiologist on postoperative contrast MRI scans. Secondary endpoints are: 1) overall survival (OS), 2) progression-free survival (PFS), 4) health-related quality of life (HRQoL) at 6 weeks, 3 months, and 6 months after surgery, and 4) frequency and severity of Serious Adverse Events (SAEs) in each arm. Estimated total duration of the study is 5 years. Patient inclusion is 4 years, follow-up is 1 year. The study will be carried out by the centers affiliated with the European and North American Consortium and Registry for Intraoperative Mapping (ENCRAM).
Current standard of care therapy and all FDA approved adjuvant therapy for glioblastoma continue to provide less than 12 months of progression free survival (PFS) and less than 24 months of overall survival (OS). There is an extreme need for any novel therapy against glioblastoma that increases progression free survival and overall survival in patients diagnosed with this invasive form of cancer. A significant reason for such a poor prognosis is the infiltrative nature of this tumor in non-enhancing regions (NE) beyond the central contrast-enhancing (CE) portion of tumor, which is difficult to visualize and treat with surgical, medical, or radiotherapeutic means. Since tumor cells exhibit abnormal metabolic behavior leading to extracellular acidification, we theorize a newly developed pH-sensitive MRI technique called amine chemical exchange saturation transfer echoplanar imaging (CEST-EPI) may identify infiltrating NE tumor beyond what is clear on standard MRI with gadolinium contrast. This phase I safety study will use use intraoperative CEST-EPI guided resections in glioblastoma at increasing distances from areas of CE tumor to test whether this technique is safe and can remove additional areas of infiltrative NE tumor. The primary objective of this study is to assess the safety of pH-sensitive amine CEST-EPI guided resections for glioblastoma.The secondary objectives of this study include: 1. A preliminary efficacy analysis of CEST-EPI guided resections in extending progression free and overall survival. 2. To confirm that resected tissue obtained from pH-sensitive amine CEST-EPI guided resections contain infiltrating NE tumor. The primary endpoint for this study will be safety of resecting "CEST positive", acidic regions within T2 hyperintense regions of glioblastoma thought to contain active NE tumor at increasing distances from contrast enhancing tumor with development of a recommended maximal tolerated resection. 1. At the maximal tolerated resection, a preliminary efficacy study with endpoints of progression free survival (as defined by RANO Resect 2.0) 1 and overall survival. 2. Quantitation of infilitrating tumor burden on CEST-EPI resected tissue using immunohistochemical staining. 12 patients up to 24 patients based on resection limiting toxicities with potential expansion of up to 16 patients at the maximum tolerated resection. Inclusion Criteria: 1. Must be able to provide written informed consent 2. Male or female \> 18 years of age 3. Karnofsky Performance Scale (KPS) \> 70 (indicating good performance status). 4. Individuals with suspected, newly diagnosed or recurrent IDH wild type WHO IV glioblastoma (intraxial, expansile contrast-enhancing mass without evidence of metastatic disease. This will be reviewed by UCLA neuroradiology to only include patients with high likelihood of GBM) Exclusion Criteria: 1. Pediatric patients 2. Diagnostic uncertainty (reviewed by UCLA neuroradiology history extracranial malignancy or autoimmune disease) 3. Medical conditions that make patients a poor candidate for anesthesia and/or surgery (decision for surgery will follow standard pre-operative clearance guidelines and will not differ for this specific study from standard of care treatment plan) 4. Involvement of eloquent areas (as defined by MRI signal clearly involving areas that would lead to a qualifying neurologic deficit as defined in surgical limiting toxicity - this will specifically include: 1) primary motor cortex, 2) primary sensory cortex, 3) sensorimotor fibers as defined on pre-operative diffusion tensor imaging, 4) primary language areas (Broca, Wernicke), 5) arcuate fasiculus as defined on pre-operative diffusion tensor imaging Pre-operative: Standard of care pre-operative MRI including perfusion and pH-weighted amine CEST-EPI (which will add up to 15 minutes of scan time) for a single pre-operative exam prior to surgery. Surgery: 1 day (subjects to be admitted to the hospital) Follow-up: inpatient stay (1-3 days), 2 week clinical assessment (outpatient post-op clinic visit). MRI and clinical assessment at 4 weeks (end of resection limited toxicity window). Following this, there will be standard of care follow up with MRI and clinical assessment starting at 8 weeks +/- 4 weeks (per RANO 2.0). 1 Total study duration for recruitment, enrollment, and study completion of all subjects is up to 2 years. Single-arm, surgical resection escalation safety trial with a preliminary efficacy study at the maximal tolerated resection This safety evaluation will mimic a phase 1 dose escalation safety study using a rule based approach on based on a i3+3 design.2 Using standard of care resection of contrast enhancement as the baseline, we will begin with 3 subjects with maximal resection + "CEST positive" areas 0.7 cm from the contrast enhancing boundary within areas of T2 hyperintensity. If there is not \> 1 pre-determined resection limiting toxicity (RLT, defined below) in this cohort, the r
The purpose of this research is to learn more about how what the Apple watch measures, in terms of walking data, heart rate, breathing rate, and sleep habits, relates to how participants feel. During the course of the treatment, the symptoms participants experience change, and whether the Apple watch can detect these changes. Ultimately, this knowledge is being used to design proactive tools and signatures that can predict complications or symptom changes before they happen.
This clinical trial uses a type of imaging scan called magnetic resonance imaging (MRI) to study brain tumor biology in patients with glioblastoma that can be removed by surgery (resectable). Malignant gliomas are the second leading cause of cancer mortality in people under the age of 35 in the United States. Glioblastoma is a type of malignant glioma with very poor patient prognosis. There are currently only about 3 drugs approved by the Food and Drug Administration (FDA) for the treatment of glioblastoma, one of them being administration of bevacizumab, which is very expensive. It is the most widely used treatment for glioblastoma with dramatic results. However, previous clinical trials have not demonstrated an overall survival benefit across all patient populations with glioblastoma that has returned after treatment (recurrent). The study aims to identify which patients who will benefit from bevacizumab therapy by observing MRI images and corresponding imaging biomarkers.
This is a phase 2 open-label study to evaluate the safety and efficacy of N-803 and PD-L1 t-haNK when combined with Bevacizumab in subjects with recurrent or progressive GBM. Participants will receive N-803 subcutaneously (SC), PD-L1 t-haNK intravenously (IV), and Bevacizumab IV combination therapy. Treatment for all enrolled participants will consist of repeated cycles of 28 days for a maximum treatment period of 76 weeks (19 cycles). Treatment will be administered on days 1 and day 15 of each cycle. Treatment will be discontinued if the participant reports unacceptable toxicity (not corrected with dose reduction), withdraws consent, if the Investigator feels it is no longer in the participant's best interest to continue treatment, or the participant has confirmed progressive disease by iRANO, unless the participant is potentially deriving benefit per Investigator's assessment. Participants will be followed for collection of survival status every 12 weeks (± 2 weeks) for the first 2 years, then yearly thereafter.
This multi-site, Phase 1/2 clinical trial is an open-label study to identify the safety, pharmacokinetics, and efficacy of a repeated dose regimen of NEO212 alone for the treatment of patients with radiographically-confirmed progression of Astrocytoma IDH- mutant, Glioblastoma IDH-wildtype, and the safety, pharmacokinetics and efficacy of a repeated dose regimen of NEO212 when given with select SOC for the treatment of solid tumor patients with radiographically confirmed uncontrolled metastases to the brain. The study will have three phases, Phase 1, Phase 2a and Phase 2b.
The goal of the study is to conduct a pilot test of the psychosocial support intervention with family caregivers and/or patients coping with glioblastoma.
This is a phase 2 study to evaluate the safety and preliminary evidence of effectiveness of azeliragon, in combination with radiation therapy, as an initial treatment of a form of glioblastoma. Glioblastoma is a type of brain cancer that grows quickly and can invade and destroy healthy tissue. There's no cure for glioblastoma, which is also known as glioblastoma multiforme. Treatments, including surgery, radiation, and chemotherapy might slow cancer growth and reduce symptoms. New treatments of glioblastoma are needed.
This single center, single arm, open-label, phase I study will assess the safety of laparoscopically harvested autologous omentum, implanted into the resection cavity of recurrent glioblastoma multiforme (GBM) patients.
This single center, single arm, open-label, phase 2 study will assess the safety and efficacy of a pedicled temporoparietal fascial (TPF) or pericranial flap into the resection cavity of newly diagnosed glioblastoma multifome (GBM) patients. The objective of the Phase 2 study is to demonstrate that this surgical technique is safe and effective in a human cohort of patients with resected newly diagnosed AA or GBM and may improve progression-free survival (PFS) and overall survival (OS).
The purpose of this study is to establish the recommended phase 2 dose of eflornithine in combination with temozolomide in patients whose glioblastoma is newly diagnosed, and to evaluate safety and tolerability of this combination at that dose.
This early phase I trial tests brain concentration level and safety of defactinib or VS-6766 for the treatment of patients with glioblastoma. Recently, two new drugs that seem to work together have been shown to have promising treatment effects in tissue culture and animal models of glioblastoma. Each inhibits a different glioblastoma growth pathway and when used together may create a larger effect on tumor growth than either alone. Growth pathway describes a series of chemical reactions in which a group of molecules in a cell work together to control cell growth. It is known that glioblastoma tumor cells can grow because of lack of regulation. Both Pyk2 and the closely related kinase (FAK) proteins help regulate tumor cell invasion, unless they are produced in large amounts (over expressed). Specifically, Raf and FAK/Pyk2 regulation of cell division is activated quite a bit more in gliomas compared to normal tissues. Recently developed inhibitors of Raf (VS-6766) and FAK (defactinib) which belong to a class of medications called kinase inhibitors, are aimed to bring their activity to proper levels and may stop tumor growth.
This phase II trial compares the effect of short course radiotherapy (RT) to standard course RT for the treatment of patients diagnosed with glioblastoma (GBM). The researchers want to learn whether the shorter course treatment is non-inferior (not worse than the standard of care), for patients with GBM. Radiation therapy uses high energy x-rays, particles, or radioactive seeds to kill cancer cells and shrink tumors. Short course radiotherapy delivers higher doses of radiation over a shorter period of time and may kill more tumor cells and have fewer side effects.