132 Clinical Trials for Various Conditions
Purpose of the Study: To determine the maximally tolerated dose (MTD) and the Recommended Phase 2 Dose (RP2D) of PVSRIPO when delivered intracerebrally by convection-enhanced delivery (CED). To obtain correlative mechanistic evidence of PVSRIPO's effects on infected WHO Grade IV malignant glioma tumors and to estimate progression-free survival (PFS) and overall survival (OS) in recurrent WHO Grade IV malignant glioma patients. To obtain information about clinical response rates to intratumoral inoculation of PVSRIPO. To estimate the efficacy of PVSRIPO administered at the optimal dose.
This is a multicenter, open-label, Phase 1/2, dose-escalation and dose expansion study of a CXCR4 inhibitor, USL311, alone and in combination with lomustine in subjects with advanced solid tumors (Phase 1) and subjects with relapsed/recurrent GBM (Phase 2). The study is designed to explore the safety, tolerability, pharmacokinetics, and preliminary efficacy of USL311 alone and in combination with lomustine.
A Phase 1b/2, Multicenter, Open-Label Study of ACP-196 in Subjects with Recurrent Glioblastoma Multiforme (GBM)
This feasibility study will assess the effects of the Nativis Voyager therapy in patients with first or second recurrence of GBM who have either failed standard of care or are intolerant to therapy. The study will enroll and treat up to 32 subjects with Voyager plus lomustine with or without bevacizumab. Safety and clinical utility will be evaluated.
Phase I Objectives: -To determine the maximum tolerated dose (MTD) of vorinostat + erlotinib versus vorinostat + erlotinib + temozolomide in adult patients with recurrent glioblastoma multiforme (GBM) and anaplastic gliomas. Phase II Objectives: Primary: To determine the efficacy of vorinostat + erlotinib versus vorinostat + erlotinib + temozolomide in patients with recurrent glioblastoma multiforme as progression free survival using a two arm adaptive randomization phase II trial design. Secondary: To determine the radiological response, progression free survival (PFS) at 6 months, overall survival and unexpected toxicity in the two treatment arms; and to obtain exploratory data regarding histone 3 and 4 acetylation, treatment related changes in the epidermal growth factor receptor (EGFR) pathway proteins, and changes in e-cadherin and vimentin expression (mRNA /protein) levels in tumor tissue and peripheral monocytes in a subset of surgical patients.
The goal of this clinical research study is to learn if the combination of bevacizumab and lomustine can help to control glioblastoma. The safety of this combination will also be studied.
The goal of this clinical research study is to learn if vorinostat when given with isotretinoin and temozolomide can help to control glioblastoma or gliosarcoma. The safety of these drug combinations will also be studied.
This study will define the safety and efficacy of Everolimus (RAD001) administered daily in patients with glioblastoma multiforme (GBM)
The purpose of this study is to evaluate the anti-tumor activity and safety of Panzem NCD given in combination with daily oral fixed-dose temozolomide in patients with recurrent glioblastoma multiforme.
The study is a randomized, controlled trial, designed to test the efficacy and safety of a new medical device, the NovoTTF-100A. The device is an experimental, portable, battery operated device for chronic treatment of patients with recurrent or progressive glioblastoma multiforme (GBM) using alternating electric fields (termed TTFields).
This was an investigational study to assess the objective overall response (OOR) rate (complete response \[CR\] + partial response \[PR\]) of imatinib mesylate and hydroxyurea (hydroxycarbamide) combination therapy in patients with recurrent glioblastoma multiforme (brain tumors). This study also evaluated the duration of tumor response (as per MacDonald criteria), clinical benefit, progression-free survival rate at 6 and 12 months, and the survival rate at 12 and 24 months.
This is a Phase I study to demonstrate the manufacturing feasibility and safety, and to determine the maximum tolerated dose (MTD) of RNA-LP vaccines in adult patients with recurrent glioblastoma.
The current design provides a window to analyze the impact of the ACT001+Pembrolizumab combination on the tumor microenvironment and disease outcomes.
This is a 2-part multicenter Phase 1b study designed to test icapamespib in patients with recurrent brain lesions. Part 1 of the trial will be a standard 3 by 3 dose escalation design where different doses are examined. Part 2 will be a dose expansion cohort to further evaluate the recommended Phase 2 dose (RP2D). The RP2D is defined as the dose level recommended for further clinical study, or the highest dose tested.
Bradmer Pharmaceuticals, Inc. (Bradmer) is requesting approval to study the safety of Neuradiab® when combined with Bevacizumab (Avastin) therapy given at a minimum of 30 days after Neuradiab administration in patients with a first or second recurrence of glioblastoma multiforme (GBM), in an attempt to manage life threatening recurrence of Grade IV malignant glioma.
The primary objective of this study is to determine the 6-month Progression free survival (PFS) when intravenous (IV) AR-67 is administered in adults with confirmed recurrence of GBM who have not recently (\> 90 days) recurred after treatment bevacizumab (including patients who've received temazolamide, but no bevacizumab). The primary objective in the rapid bevacizumab failure group (\< 90 days) is to determine the 2-month PFS.
AEE788 is an orally active, reversible, small-molecule, multi-targeted kinase inhibitor with potent inhibitory activity against the ErbB and VEGF receptor family of tyrosine kinases. It has an IC50 of less than 100 nM against p-EGFR, p-ErbB2, and p-KDR (VEGFR2). This study will assess the safety, pharmacokinetic/pharmacodynamic (PK/PD) profiles and clinical activity of AEE788 in a recurrent GBM population.
Patients diagnosed with glioblastoma (GBM) are faced with limited treatment options. This pilot study will evaluate the safety and feasibility of combining an investigational drug called 5-ALA with neuronavigation-guided low-intensity focused ultrasound (LIFU) for patients who have recurrent GBM. Focused ultrasound (FUS) can be used to non-invasively destroy tumor tissue while preserving normal tissue. When FUS is combined with 5-ALA, this combinatorial approach is called sonodynamic therapy (SDT), and this investigational therapy is being tested for its ability to cause damage to GBM cells. SDT will take place prior to surgery for recurrent GBM.
This single center, single arm, open-label, phase I study will assess the safety of laparoscopically harvested autologous omentum, implanted into the resection cavity of recurrent glioblastoma multiforme (GBM) patients.
The FRONTIER Study is a prospective, interventional, single-arm, multi-center, study to assess the safety and technical feasibility of TheraSphere GBM in patients with recurrent GBM.
* To evaluate the safety and tolerability of escalating doses of ERAS-801 in study participants with recurrent glioblastoma multiforme (GBM). * To determine the Maximum Tolerated Dose (MTD) and/or Recommended Dose (RD) of ERAS-801. * To evaluate the antitumor activity of ERAS-801. * To evaluate the PK profile of ERAS-801.
Paclitaxel is among the most active agents against glioblastoma in preclinical models. However, its clinical use has been hampered by the blood-brain barrier (BBB). In this trial we will implant a novel device with 9 ultrasound emitters allowing to temporarily and reversibly open the BBB immediately prior to chemotherapy infusion with albumin-bound paclitaxel. In the phase 1 component, increasing doses of chemotherapy will be delivered as long deemed safe based on the prior patient not experiencing severe toxicity. Once the the recommended dosing has been established, carboplatin will be added to the regimen and additional patients will be treated in order to better evaluate the antitumor efficacy of this novel treatment. The device will be implanted at the time of surgical resection of the recurrent tumor. During that procedure and when feasible, a first test dose of the chemotherapy will be administered in the operating room after sonication (procedure of activating ultrasound and opening the BBB) and tissue concentrations in different parts of the resected tumor will be measured. In select patients, the sonication procedure may occur immediately after the test dose of chemotherapy is administered. The objectives of this trial are to establish a safe and effective dose of albumin-bound paclitaxel, to demonstrate that the opening of the BBB increases chemotherapy concentration in the tumor, and to estimate how effective this treatment is in reducing the tumor burden and prolonging life.
This study will find the maximum safe dose (MSD) or maximum tolerated dose (MTD) of CYNK-001 which are NK cells derived from human placental CD34+ cells and culture-expanded. CYNK-001 cells will be given after lymphodepleting chemotherapy for the systemic cohort (IV) (intravenous). The intratumoral cohort (IT) will not be giving lymphodepletion. The safety of this treatment will be evaluated, and researchers want to learn if NK cells will help in treating recurrent glioblastoma multiforme.
This is a Phase 1/2 study of selinexor in combination with standard of care (SoC) therapy for newly diagnosed glioblastoma (nGBM) or recurrent glioblastoma (rGBM). This study will be conducted in 2 phases: a Phase 1a dose finding study followed by Phase 1b (dose expansion) and a Phase 2 randomized efficacy exploration study and will independently evaluate 3 different combination regimens in 3 treatment arms in patients with nGBM (Arms A and B) or with rGBM (Arm C). * Arm A: evaluating the combination of selinexor with radiation therapy (S-RT) in nGBM participants with uMGMT * Arm B: evaluating the combination of selinexor with radiation therapy and temozolomide (TMZ) (S-TRT) in nGBM participants with methylated-O6-methylguanine-DNA-methyltransferase (mMGMT) * Arm C: evaluating the combination of selinexor with lomustine (or carmustine, if lomustine is not available) (S-L/C) in rGBM participants regardless of MGMT status * Arm D: evaluating the combination of selinexor with bevacizumab in rGBM participants regardless of MGMT status * Arm E: evaluating the combination of selinexor with tumor treating fields (TTField) in rGBM participants regardless of MGMT status
This single center, single arm, open-label, phase I study will assess the safety of a laparoscopically harvested omental free flap into the resection cavity of recurrent glioblastoma multiforme (GBM) patients. All participants included in the study will undergo standard surgical resection for diagnosed recurrent GBM. Following the resection, the surgical cavity will be lined with a laparoscopically harvested omental free flap. The participant's dura, bone and scalp will be closed as is customary. The participant will be followed for side effects within 72 hours, 7 days, 30 days, 90 days and 180 days. Risk assessment will include seizure, stroke, infection, tumor progression, and death.
This is an adaptive design, randomized controlled, Phase 3 clinical trial in patients with glioblastoma multiforme (GBM) or gliosarcoma (GS), previously treated with surgery (if appropriate), standard of care chemo-radiation with temozolomide, +/- adjuvant temozolomide, and bevacizumab and now has progressive disease during or after bevacizumab. A total of up to 180 eligible patients with recurrent/progressive GBM or GS will be randomized to receive either the investigational drug (VAL-083) or "Investigator's choice of salvage therapy" as a contemporaneous control, in a 2:1 fashion. Up to 120 eligible patients will be randomized to receive VAL-083 at 40 mg/m2 IV on days 1, 2, and 3 of a 21-day treatment-cycle, for up to 12, 21-day treatment cycles or until they fulfill one of the criteria for study discontinuation. Up to 60 patients will be randomized to receive "Investigator's choice of salvage therapy", limited to temozolomide, lomustine, or carboplatin, until they fulfill one of the criteria for study discontinuation. The dose level for Investigator's choice salvage therapy (temozolomide, lomustine, or carboplatin), will be in accordance with the product label or institutional guidelines. In both study arms, interval medical histories, targeted physical exams, neurologic evaluations, complete blood counts, and other laboratory and safety assessments will be performed approximately every 21-days while receiving treatment. Tumor assessments are to be performed approximately every 42 ± 7 days while remaining on study. The study is estimated to last approximately 20 months.
New treatments are greatly needed for patients with recurrent glioblastoma. Metronomic temozolomide is a standard treatment option but has, at best, modest activity. The nanoliposomal irinotecan may be much more active than the parent compound irinotecan since nanoliposomal irinotecan's ability to cross the blood brain barrier is improved. This phase I study will establish the MTD of the combination of nanoliposomal irinotecan in combination with temozolomide safety and preliminary clinical efficacy of the combination of nanoliposomal irinotecan and metronomic temozolomide.
Background: A glioblastoma is a tumor in the brain. It is treated with surgery, chemotherapy and radiation therapy. However, most people s tumors come back after therapy. When the tumor grows back, surgery or chemotherapy may not be possible or may no longer work. Repeat radiation therapy or re-irradiation, is an option for treating these tumors when they regrow. Objective: To find out the safety and highest tolerated dose of re-irradiation for people who have recurrent glioblastoma. Eligibility: People ages 18 50 who have glioblastoma that has been treated with radiation but has regrown. Design: Participants will be screened with: Medical history Physical exam MRI of the brain: They will lie in a machine that takes pictures of the brain. Participants will have baseline tests before they start therapy. These will include: Blood tests Neuropsychological tests: These test things like memory, attention, and thinking. Quality of life questionnaire Eye and hearing tests Participants will get a CT of the brain prior to radiation start in order to plan the radiation treatment. Once the plan is completed, they will receive radiation once a day Monday Friday for a total of 10 17 treatments. They will lie on their back for about 10 minutes while they get the treatment. Participants will be monitored for side effects. After they finish treatment, participants will have visits 1, 2, and 3 months later. Then they will have them every 2 months for 3 years. These will include: Medical history Physical exam Blood tests MRI of the brain. Quality of life questionnaire Neuropsychological tests (at some visits) After 3 years, participants will be contacted by phone each month. ...
Glioblastoma multiforme (GBM) is the most common and deadliest primary malignant neoplasm of the central nervous system in adults. Despite an aggressive multimodality treatment approach including surgery, radiation therapy and chemotherapy, overall survival remains poor. Novocure has shown that when properly tuned, very low intensity, intermediate frequency electric fields (TTFields) stunt the growth of tumor cells. The Optune system (NovoTTFTM Therapy) is a portable battery operated device, which produces TTFields within the human body by means of surface transducer arrays. The TTFields are applied to the patient by means of surface transducer arrays that are electrically insulated, so that resistively coupled electric currents are not delivered to the patient. Optune is currently FDA-approved as a single modality treatment for recurrent GBM when both surgical and radiotherapy options have been exhausted as well as combination with adjuvant temozolomide for newly diagnosed GBM. This research study is being performed to determine whether or not TTFields combined with pulsed bevacizumab treatment increases overall survival in patients with bevacizumab-refractory GBM compared to historical controls treated with continuous bevacizumab alone or in combination with other chemotherapy.
This pilot phase II trial studies how well Novocure's Tumor Treating Electric Fields (NovoTTF) therapy works in treating patients with recurrent glioblastoma multiforme. NovoTTF therapy uses a low intensity electric current to kill tumor cells. NovoTTF therapy may be effective treatment for brain cancer.