Treatment Trials

88 Clinical Trials for Various Conditions

Focus your search

RECRUITING
Nerve Transfers Plus Electrical Stimulation to Improve Hand Function in Cervical Spinal Cord Injury
Description

The goal of this prospective observational study is to determine whether brief intraoperative electrical stimulation and temporary postoperative electrical stimulation improve motor and/or pain outcomes for patients with cervical spinal cord injury undergoing standard of care nerve transfer surgery to improve hand function. The main hypotheses include: Hypothesis #1: Brief intraoperative electrical stimulation of the donor nerves will result in improved motor outcomes (hand function) compared to standard nerve transfer surgery in patients with cervical spinal cord injuries. Hypothesis #2: Placement of a temporary peripheral nerve stimulator for 60 days of postoperative electrical stimulation will result in improved pain outcomes compared to standard nerve transfer surgery in patients with cervical spinal cord injuries. Researchers will prospectively enroll patients with cervical spinal cord injury and no hand function who will undergo standard of care nerve transfer surgery combined with standard of care brief intraoperative electrical stimulation and temporary postoperative electrical stimulation. Motor and pain outcomes will be compared to a retrospective group of patients who underwent nerve transfer surgery without intraoperative or postoperative electrical stimulation. Participants will receive standard medical care (nothing experimental) as part of this study. Participants will: * Have a preoperative assessment including physical examination, electrodiagnostic studies, functional electrical stimulation, and will complete questionnaires assessing function and quality of life * Agree upon a surgical plan, including the specific nerve transfers to be performed and whether to include brief intraoperative electrical stimulation and/or temporary postoperative electrical stimulation before being considered for enrollment in the study * Will undergo standard of care nerve transfer surgery, with at least one nerve transfer targeting improvement in hand function and will receive brief intraoperative electrical stimulation of the donor nerves and placement of a temporary peripheral nerve stimulator * Will follow-up with the surgeon 3, 6, 12, 24, and 36 months after the surgery * Will have a physical examination and will complete questionnaires at the postoperative visits * Will participate in hand therapy following the operation * Will be eligible for placement of a permanent peripheral nerve stimulator, depending on response to the temporary peripheral nerve stimulator.

COMPLETED
Romosozumab in Women With Chronic SCI
Description

This two-year open-label pilot clinical trial will evaluate the efficacy and safety of romosozumab to treat bone loss in females with chronic spinal cord injury (SCI) and osteoporosis (OP). Participants will receive monthly injections of romosozumab during the first 12 months of the study. During the second year, participants will take oral alendronate tablets on a weekly basis.

RECRUITING
Canadian-American Spinal Cord Perfusion Pressure and Biomarker Study
Description

This multicenter study will enroll 100 patients with acute traumatic cervical and thoracic SCI who have a lumbar intrathecal catheter inserted within 24 hours of their injury. The lumbar intrathecal catheter will be inserted pre-operatively for the measurement of ITP and the collection of cerebrospinal fluid (CSF) samples. SCPP will be calculated as the difference between MAP and the ITP. There are two important distinct yet related objectives in this prospective interventional study. 1. Determine the effect of SCPP maintenance ≥ 65 mmHg in acute SCI on neurologic recovery as measured by ASIA Impairment Scale (AIS) grade conversion and motor score improvement. 2. Collect CSF and blood samples for the measurement of neurochemical biomarkers and storage for future biomarker discovery and validation studies.

ENROLLING_BY_INVITATION
Stem Cell Spinal Cord Injury Exoskeleton and Virtual Reality Treatment Study
Description

The SciExVR study will evaluate the potential benefit of autologous bone marrow derived stem cells (BMSC) in the treatment of spinal cord injury with evidence of impaired motor or sensory function. The treatment consists of bilateral paraspinal injections of the BMSC at the level of the injury as well as superior and inferior to that spinal segment followed by an intravenous injection and intranasal placement. Patients undergoing BMSC treatment may also be assigned to use of exoskeletal movement (or equivalent) or virtual reality visualization (or equivalent) to augment upper motor neuron firing and/or receptivity of the sensory neurons. http://mdstemcells.com/sciexvr/

UNKNOWN
Safety Study of Human Spinal Cord-derived Neural Stem Cell Transplantation for the Treatment of Chronic SCI
Description

This is a safety study of human spinal cord-derived neural stem cell (HSSC) transplantation for the treatment of chronic spinal cord injury.

COMPLETED
A Study to Assess the Efficacy of Early Physical Therapy Intervention Following a Modified Unilateral Neck Dissection for Treatment of Head and Neck Cancer
Description

This study will determine whether patients who receive regular physical therapy immediately following a modified neck dissection surgery will report decreased shoulder disability, decreased pain, improved or maintained shoulder range of motion and strength, and improved quality of life than those who receive only home instruction.

NOT_YET_RECRUITING
A Study to Evaluate the Safety of a Delivery Device for Administering LCTOPC1 in Participants with Spinal Cord Injury
Description

The DOSED clinical study evaluates the safety and utility of a novel delivery device to deliver LCTOPC1, a cell therapy, to the spinal cord of patients with a spinal cord injury (SCI). LCTOPC1 is designed to replace or support cells that are absent or dysfunctional due to traumatic injury, with a goal to help improve the quality of life and restore or augment functional activity in persons suffering from a traumatic cervical or thoracic injuries.

RECRUITING
Neuromodulation After Spinal Cord Injury to Improve Limb Function
Description

The University at Buffalo (UB) Department of Rehabilitation Sciences is looking for adult volunteers with and without spinal cord injuries for a study on hand movement. The goal of the study is to learn about how the brain, nerves, and muscles of the body are connected and perform everyday tasks. This may help us to develop ways to improve the hand functions of people with spinal cord injuries.

RECRUITING
Neuromodulation of the Cortex and Spinal Cord
Description

Specific Aim 1: To further quantify the difference in the sensorimotor cortical activity, spinal cord activity, and corticospinal coherence of persons with CP. Overall hypotheses: The sensorimotor cortical activity, spinal cord activity, and corticospinal coherence will be uncharacteristic in persons with CP when compared with neurotypical controls. Furthermore, the extent of the alterations in the sensorimotor cortical activity, spinal cord activity, and corticospinal coherence will be tightly linked with the clinical presentations of persons with CP. Specific Aim 2: To investigate the effect of transcutaneous current stimulation applied over the cortex and/or spinal cord on the sensorimotor cortical activity, spinal cord dynamics, and corticospinal coherence. Overall hypotheses: Compared with the sham controls, those receiving the transcutaneous current stimulation will demonstrate alterations in the strength of the sensorimotor cortical activity, spinal cord activity, and corticospinal coherence. Moreover, the extent of the alterations in the sensorimotor cortical activity, spinal cord activity, and corticospinal coherence will be tightly linked with the clinical presentations of persons with CP.

Conditions
RECRUITING
Neuromodulation to Reduce Muscle Stiffness Following Spinal Cord Injury
Description

People with spinal cord injuries may experience muscle tightness or uncontrollable spasms. This study is being conducted to investigate whether transcutaneous spinal stimulation can improve these symptoms. Transcutaneous spinal stimulation is a non-surgical intervention by applying electrical currents using skin electrodes over the lower back and belly. The investigators want to see how well the intervention of transcutaneous spinal stimulation performs by testing different levels of stimulation pulse rates. Also, transcutaneous spinal stimulation is compared to muscle relaxants such as baclofen and tizanidine, commonly given to people with spinal cord injuries, to reduce muscle stiffness and spasms. By doing this, the investigators hope to discover if transcutaneous spinal stimulation similarly reduces muscle spasms and stiffness or if combining both methods works best. This could help improve treatment options for people with spinal cord injuries in the future.

NOT_YET_RECRUITING
EMPOWER Early Feasibility Study: Non-invasive BCI to Control a Wheelchair for People With Paralysis
Description

Neuralis is an innovative assistive technology designed for individuals with severe neuromuscular conditions, enabling wheelchair control through EEG signals. This study aims to assess the safety, feasibility, and efficacy of Neuralis in restoring mobility and independence. The device is a discreet EEG headset which specializes in decoding signals from visual cortex, allowing users to initiate precise wheelchair movements through focused attention. This research seeks to demonstrate Neuralis' potential in revolutionizing assistive technology by offering a non-invasive, user-friendly solution for individuals facing motor impairments, ultimately enhancing their quality of life.

NOT_YET_RECRUITING
Feasibility of Home Based Transcutaneous Spinal Cord Stimulation for Persons With SCI
Description

The proposed study will focus on the feasibility of and effectiveness to a home-based program for persons with chronic SCI focused on upper limb training augmented with a transcutaneous neurostimulator supported via a video telehealth platform.

Conditions
RECRUITING
Acute Genital Nerve Stimulation for Neurogenic Bowel Dysfunction in Individuals Living With Spinal Cord Injury
Description

Bowel issues occur in nearly all people after spinal cord injury (SCI) and one major complication is fecal incontinence (accidents). This complication has been repeatedly highlighted by people living with SCI as particularly life-limiting and in need of more options for interventions. This study will test the effect of genital nerve stimulation (GNS), with non-invasive electrodes, on the activity of the anus and rectum of persons after SCI. Recording anorectal manometry (ARM) endpoints tells us the function of those tissues and our study design (ARM without stim, ARM with stim, ARM without stim) will allow us to conclude the GNS effect and whether it is likely to reduce fecal incontinence. The study will also collect medical, demographic, and bowel related functional information. The combination of all of these data should help predict who will respond to stimulation, what will happen when stimulation is applied, and if that stimulation is likely to provide an improvement in fecal continence for people living with SCI.

RECRUITING
Operant Conditioning of the Soleus Stretch Reflex in Adults With Cerebral Palsy
Description

12 adults with spastic CP will complete 6 baseline sessions and 24 down conditioning sessions held 3 times/week. All clinical and physiological assessments collected at baseline will be reassessed after study completion, and follow ups after 2 weeks, 1 month and 3 months. The soleus H reflex (electric analogue of the stretch reflex) will be elicited in all sessions. In each session, participants will complete 20 baseline trials and 225 down conditioning trials to decrease the magnitude of the H-Reflex.

RECRUITING
Spinal Stimulation and Mobility Devices
Description

This research study will combine non-invasive spinal stimulation with mobility devices to examine the acute impact of the individual and combined effects of these innovative techniques on mobility in children with cerebral palsy.

NOT_YET_RECRUITING
iBCI Optimization for Veterans With Paralysis
Description

VA research has been advancing a high-performance brain-computer interface (BCI) to improve independence for Veterans and others living with tetraplegia or the inability to speak resulting from amyotrophic lateral sclerosis, spinal cord injury or stoke. In this project, the investigators enhance deep learning neural network decoders and multi-state gesture decoding for increased accuracy and reliability and deploy them on a battery-powered mobile BCI device for independent use of computers and touch-enabled mobile devices at home. The accuracy and usability of the mobile iBCI will be evaluated with participants already enrolled separately in the investigational clinical trial of the BrainGate neural interface.

COMPLETED
Short-Term Transcutaneous or Epidural Spinal Stimulation for Enabling Motor Function in Humans With SCI
Description

A study comparing short-term delivery of epidural spinal stimulation versus transcutaneous spinal stimulation.

RECRUITING
Operant Conditioning of Spinal Reflexes Training System--Reflex Operant Down Conditioning
Description

The purpose of this study is to validate the capacity of a reflex training system to change the size of the targeted reflex. For this, the researchers are recruiting 25 individuals with chronic incomplete SCI who have spasticity in the leg to participate in the reflex training procedure. The study involves approximately 45 visits with a total study duration of about 6 months.

ACTIVE_NOT_RECRUITING
COMMAND Early Feasibility Study: Implantable BCI to Control a Digital Device for People With Paralysis
Description

The Synchron motor neuroprosthesis (MNP) is intended to be used in subjects with severe motor impairment, unresponsive to medical or rehabilitative therapy and a persistent functioning motor cortex. The purpose of this research is to evaluate safety and feasibility. The MNP is a type of implantable brain computer interface which bypasses dysfunctional motor neurons. The device is designed to restore the transmission of neural signal from the cerebral cortex utilized for neuromuscular control of digital devices, resulting in a successful execution of non-mechanical digital commands.

RECRUITING
Noninvasive Spinal Neuromodulation Enables Locomotor Recovery in Individuals With Cerebral Palsy
Description

Assessing the effects of noninvasive spinal cord neuromodulation on improving function in individuals with cerebral palsy

Conditions
RECRUITING
Chronic Transcutaneous Stimulation to Promote Motor Function and Recovery in Individuals With Paralysis or Paresis
Description

This is an early feasibility trial to determine whether transcutaneous neuromuscular electrical stimulation, with or without transcutaneous spinal cord stimulation, using an investigational neurostimulation device improves functional arm/hand movements in individuals with paralysis or paresis due to a spinal cord injury or stroke and improves functional arm/hand or leg/foot movements in individuals with paralysis or paresis due to other brain or nerve injuries. In this study, eligible individuals that agree to participate will be asked to attend up to 5 study sessions a week for 1 year (depending on participant availability), with each session lasting up to 4 hours. At the first study session, participants will have their demographic information collected, vital signs assessed, and have measurements performed of their limbs and torso, as appropriate. They will also undergo clinical evaluations and tests to assess their current functional movement and sensation capabilities. During subsequent study sessions, participants will undergo many tasks designed to improve functional movements in paralyzed limbs. Specifically, participants will receive neuromuscular electrical stimulation to the limb(s) and/or electrical stimulation to the spinal cord to evoke specified movements. The stimulation parameters and locations on the spinal column and/or limb(s) that evoke specific movements will be noted. The movements will be assessed with visual inspection, electromyography, and/or sensors. The clinical evaluations and tests to assess functional movement and sensation capabilities will be repeated throughout the study and at the last study session to assess for functional improvements compared to the first study session. Upon completion of these study sessions, the individual's participation in the study is considered complete.

ACTIVE_NOT_RECRUITING
Epidural and Dorsal Root Stimulation in Humans With Spinal Cord Injury
Description

A study to compare electrophysiologic activity of epidural stimulation and dorsal root ganglion stimulation, as well as quantify changes in motor performance with both types of stimulation over the course of 10 rehabilitation sessions.

RECRUITING
AIM's Writing for Healing: A Workshop for Individuals Living With Paralysis
Description

The UAB Institute for Arts In Medicine (AIM) is currently implementing an expressive emotional writing pilot project for adults with paralysis caused by neurological conditions such as traumatic head or spinal cord injury.

RECRUITING
Autologous Adipose Derived Mesenchymal Stem Cells for Spinal Cord Injury Patients
Description

The purpose of this research study is to investigate the safety and potential therapeutic effects of autologous, culture-expanded, adipose derived mesenchymal stem cell intrathecal injections in the treatment of spinal cord injury.

ACTIVE_NOT_RECRUITING
Transformation of Paralysis to Stepping
Description

The main goal of the project is to develop multiple noninvasive neuromodulatory strategies to facilitate full weight bearing stepping overground in people with paralysis. We will determine the effectiveness of combining noninvasive spinal cord stimulation and the administration of buspirone (a monoaminergic agonist) in facilitating locomotor activity in a gravity-neutral apparatus, during body weight supported stepping on a treadmill, when stepping overground in an assistive robotic exoskeleton, or during full weight bearing stepping overground in a rolling walker. Our objective is to identify the experimental variables that define the efficacy of these novel neuromodulatory techniques over a 5 year period in 15 participants with severe spinal cord injury who are at least one year post-injury.

COMPLETED
Adipose Stem Cells for Traumatic Spinal Cord Injury
Description

The purpose of this study is to determine if mesenchymal stem cells (MSC) derived from the fat tissue can be safely administered into the cerebrospinal fluid (CSF) of patients with spinal cord injury. Adipose-derived mesenchymal stem cells (AD-MSCs) have been used in previous research studies at the Mayo Clinic. All subjects enrolled in this study will receive AD-MSC treatment, which is still experimental and is not approved by the U.S. Food and Drug Administration (FDA) for large scale use. However, the FDA has allowed the use of this agent in this research study.

COMPLETED
The Role of Trans-spinal Direct Current Stimulation (tsDCS) in Treating Patients With Hand Spasticity After Stroke
Description

The purpose of this study is to evaluate if 5 consecutive sessions of PathMaker anodal DoubleStim treatment, which combines non-invasive stimulation of the spinal cord (tsDCS- trans-spinal direct current stimulation) and of the median nerve at the peripheral wrist (pDCS-- peripheral direct current stimulation), can significantly reduce spasticity of the wrist and hand after stroke.

COMPLETED
Dose Escalation Study of AST-OPC1 in Spinal Cord Injury
Description

The purpose of this study is to evaluate the safety of cross sequential escalating doses of AST-OPC1 administered among 5 cohorts at a single time-point between 21 and 42 days post injury, inclusively, to subjects with subacute cervical spinal cord injuries (SCI).

RECRUITING
Visuomotor Prosthetic for Paralysis
Description

The investigators objective is to run human clinical trials in which brain activity recorded through a "brain-chip" implanted in the human brain can be used to provide novel communication capabilities to severely paralyzed individuals by allowing direct brain-control of a computer interface. A prospective, longitudinal, single-arm early feasibility study will be used to examine the safety and effectiveness of using a neural communication system to control a simple computer interface and a tablet computer. Initial brain control training will occur in simplified computer environments, however, the ultimate objective of the clinical trial is to allow the human patient autonomous control over the Google Android tablet operating system. Tablet computers offer a balance of ease of use and functionality that should facilitate fusion with the BMI. The tablet interface could potentially allow the patient population to make a phone call, manage personal finances, watch movies, paint pictures, play videogames, program applications, and interact with a variety of "smart" devices such as televisions, kitchen appliances, and perhaps in time, devices such as robotic limbs and smart cars. Brain control of tablet computers has the potential to greatly improve the quality of life of severely paralyzed individuals. Five subjects will be enrolled, each implanted with the NCS for a period of at least 53 weeks and up to 313 weeks. The study is expected to take at least one year and up to six years in total.

Conditions
COMPLETED
Transcutaneous Electrical Spinal Cord Stimulation for Lower Limbs
Description

This study is to determine if non-invasive electrical stimulation of the spinal cord can be used to: 1) assess spared function following a spinal cord injury; and 2) be use for rehabilitation.