18 Clinical Trials for Various Conditions
The purpose of this study is to evaluate whether treating glioblastoma patients with sitagliptin can improve immune response against the tumor by targeting specific immune cells called myeloid-derived suppressor cells (MDSCs) that suppress your body's natural immune response against cancer. Sitagliptin is an investigational drug for this condition that works by inhibiting an enzyme called dipeptidyl peptidase 4 (DPP-4), which MDSCs rely on to enter the brain and function. While sitagliptin is FDA-approved for diabetes treatment, its use in glioblastoma is investigational (experimental).
This is a phase I, open-Label, single/multiple dose, dose-escalation study to evaluate the safety, tolerability and antitumor activity of anti-B7-H3 CAR-T cell injection (TX103) in subjects with recurrent or progressive Grade 4 Glioma.The study also plan to explore the Maximum Tolerated Dose (MTD) and determine the Recommended Phase II Dose (RP2D) of the CAR-T cell therapy.
This is an open-label, single-center Phase 0/1b study that will enroll at least 27 participants with recurrent WHO Grade 4 Glioma requiring re-radiation and approximately 35 participants with newly-diagnosed WHO Grade 4 glioma (nGBM). The trial will be composed of a Phase 0 component (subdivided into Arms A - C), and an expansion Phase 1b. Patients with tumors demonstrating a positive PK response in the Phase 0 component of the study will be eligible to graduate to an expansion phase that combines therapeutic dosing of AZD1390 plus standard-of-care fractionated radiotherapy (RT).
This phase I trial tests the safety, side effects, and best dose of anti-glycoprotein-A repetitions predominant (GARP) chimeric antigen receptor (CAR) T cell therapy and how well it works in treating patients with grade III or IV gliomas that have come back after a period of improvement (recurrent). CAR T-cell therapy is a type of treatment in which a patient's T cells (a type of immune system cell) are changed in the laboratory so they will attack tumor cells. T cells are taken from a patient's blood. Then the gene for a special receptor that binds to a certain protein, such as GARP, on the patient's tumor cells is added to the T cells in the laboratory. The special receptor is called a CAR. Large numbers of the CAR T cells are grown in the laboratory and given to the patient by infusion for treatment of certain tumors. Giving anti-GARP CAR T cell therapy may be safe, tolerable, and/or effective in treating patients with recurrent grade III or IV gliomas.
This clinical trial evaluates whether gallium-68 (Ga-68) prostate specific membrane antigen (PSMA)-11 positron emission tomography (PET)/computed tomography (CT) imaging is useful in differentiating between disease that has come back after a period of improvement (recurrence) or that is growing, spreading, or getting worse (progression) and treatment effect in patients with glioma. Patients with glioma undergo frequent imaging for assessment of disease status. After first-line treatment however, the correlation between imaging findings and tumor activity can be confused, and surgery is often required for definitive diagnosis. The PET/CT scanner is an imaging machine that combines 2 types of imaging in a single scan. The PET scanner detects and takes pictures of where the radioactive imaging agent (68Ga PSMA-11) has gone in the body and the CT scanner uses x-rays to take structural pictures inside the body. PSMA PET also binds to neoplastic blood vessels, including those in gliomas. This study may help researchers learn whether GA-68 PSMA-11 PET/CT is useful for improving detection of tumor recurrence or progression, as opposed to treatment effects, in patients with gliomas.
This phase I trial tests the safety, side effects, and best dose of triapine in combination with temozolomide in treating patients with glioblastoma that has come back after a period of improvement (recurrent). Triapine inhibits an enzyme responsible for producing molecules required for the production of deoxyribonucleic acid (DNA), which may inhibit tumor cell growth. Temozolomide is in a class of medications called alkylating agents. It works by damaging the cell's DNA and may kill tumor cells and slow down or stop tumor growth. Giving triapine in combination with temozolomide may be safe, tolerable, and/or effective in treating patients with recurrent glioblastoma.
This phase II trial tests how well retifanlimab with bevacizumab and hypofractionated radiotherapy, compared to bevacizumab and hypofractionated radiotherapy alone, works in treating patients with glioblastoma that has come back after a period of improvement (recurrent). A monoclonal antibody is a type of protein that can bind to certain targets in the body, such as molecules that cause the body to make an immune response (antigens). Immunotherapy with monoclonal antibodies, such as retifanlimab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Bevacizumab is in a class of medications called antiangiogenic agents. It works by stopping the formation of blood vessels that bring oxygen and nutrients to tumor. This may slow the growth and spread of tumor. Hypofractionated radiation therapy delivers higher doses of radiation therapy over a shorter period of time and may kill more tumor cells and have fewer side effects. Giving retifanlimab with bevacizumab and hypofractionated radiotherapy may work better in treating patients with recurrent glioblastoma than bevacizumab and hypofractionated radiotherapy alone.
This phase II trial tests how well erdafitinib works in controlling IDH-wild type (WT), FGFR-TACC gene fusion positive gliomas that have come back after a period of improvement (recurrent) or that are growing, spreading, or getting worse (progressive). Erdafitinib is in a class of medications called kinase inhibitors. It works by blocking the action of an abnormal FGFR protein that signals tumor cells to multiply. This may help keep tumor cells from growing and may kill them. Giving erdafitinib may help to slow the growth of, or to shrink, tumor cells in patients with recurrent or progressive IDH-wild type gliomas with FGFR-TACC gene fusion.
Studies which have separately studied bevacizumab for recurrent gliomas and bevacizumab for newly-diagnosed glioma have shown good results and the regimens have been well-tolerated by patients. This study seeks to investigate the use of bevacizumab with the standard therapy (radiation therapy and temozolomide) in newly diagnosed patients, followed by bevacizumab and temozolomide with the continuation of bevacizumab following progression. Two critical questions remain- the role of bevacizumab maintenance and bevacizumab at the time of progression in a patient previously treated with bevacizumab at the time of initial diagnosis.
This is a single-arm open-label phase 1 dose escalation/expansion trial assessing the safety and efficacy of concurrent intrathecal azacitidine and intrathecal nivolumab in recurrent high-grade glioma.
This is a 2-part study. The purpose of Part 1 of the study is to evaluate the efficacy, safety, and pharmacokinetic (PK) characteristics of safusidenib in participants with recurrent/progressive IDH1-mutant World Health Organization (WHO) Grade 2 or Grade 3 glioma. The purpose of Part 2 will be to evaluate the efficacy of maintenance safusidenib treatment versus placebo in IDH1-mutant Grade 3 astrocytoma with high-risk features or Grade 4 IDH1-mutant astrocytoma, following standard-of-care radiation or chemoradiation and adjuvant temozolomide. Part 2 will be randomized, double blind, and placebo controlled.
This phase II trial studies the effect of immunotherapy drugs (ipilimumab and nivolumab) in treating patients with glioma that has come back (recurrent) and carries a high number of mutations (mutational burden). Cancer is caused by changes (mutations) to genes that control the way cells function. Tumors with high number of mutations may respond well to immunotherapy. Immunotherapy with monoclonal antibodies such as ipilimumab and nivolumab may help the body's immune system attack the cancer and may interfere with the ability of tumor cells to grow and spread. Giving ipilimumab and nivolumab may lower the chance of recurrent glioblastoma with high number of mutations from growing or spreading compared to usual care (surgery or chemotherapy).
This study will be aimed at investigating the effectiveness of a treatment for brain tumors called Photodynamic Therapy, or PDT. Briefly, a subject will receive a light-sensitive drug, called Photofrin®, the day before a tumor removal surgery. The next day, after the tumor is removed, red light from a laser will be shone into the tumor cavity through a light-diffusing sphere. This light will activate the photosensitizer, and possibly kill any tumor cells that may be left. We plan to measure how long the subject may go without a new tumor regrowth, and overall how long subjects survive. We will compare these results to typical results to see if we are seeing any improvements. Objective: To define the antitumor activity of Photofrin® and laser light activation within the confines of a Phase II study.
This study is for newly diagnosed WHO Grade IV malignant glioma patients to determine whether an investigational drug known as marizomib (MRZ) will improve the treatment of newly diagnosed glioblastoma patients by delaying the growth of the cancer, reducing the size of the tumor, and/or improving survival. Marizomib (MRZ) is being added to standard-of-care treatments of radiotherapy (RT), temozolomide (TMZ), and Optune.
This is a 2-part multicenter Phase 1b study designed to test icapamespib in patients with recurrent brain lesions. Part 1 of the trial will be a standard 3 by 3 dose escalation design where different doses are examined. Part 2 will be a dose expansion cohort to further evaluate the recommended Phase 2 dose (RP2D). The RP2D is defined as the dose level recommended for further clinical study, or the highest dose tested.
The purpose of this study is to measure the benefit of adding abemaciclib to the chemotherapy, temozolomide, for newly diagnosed high-grade glioma following radiotherapy. Your participation could last approximately 11 months and possibly longer depending upon how you and your tumor respond.
The purpose of this study is to evaluate any preliminary evidence of anticancer activity of pembrolizumab combined with either pemetrexed or abemaciclib when used following surgery and before standard therapy with radiation and temozolomide in patients with newly diagnosed high grade glioma. Additional aims of the study are to: * Find out the side effects (good and bad) of pembrolizumab combined with pemetrexed or abemaciclib; * • Evaluate tumor characteristics by collecting brain tumor tissue samples. * Measure the amount of pembrolizumab, pemetrexed, and/or abemaciclib that gets in the body by collecting blood and cerebrospinal fluid. * Look at biomarkers (biochemical features that can be used to measure the progress of disease or the effects of a drug) in blood and cerebrospinal fluid if available.
Approximately 90% of children with malignant brain tumors that have recurred or relapsed after receiving conventional therapy will die of disease. Despite this terrible and frustrating outcome, continued treatment of this population remains fundamental to improving cure rates. Studying this relapsed population will help unearth clues to why conventional therapy fails and how cancers continue to resist modern advances. Moreover, improvements in the treatment of this relapsed population will lead to improvements in upfront therapy and reduce the chance of relapse for all. Novel therapy and, more importantly, novel approaches are sorely needed. This trial proposes a new approach that evaluates rational combination therapies of novel agents based on tumor type and molecular characteristics of these diseases. The investigators hypothesize that the use of two predictably active drugs (a doublet) will increase the chance of clinical efficacy. The purpose of this trial is to perform a limited dose escalation study of multiple doublets to evaluate the safety and tolerability of these combinations followed by a small expansion cohort to detect preliminary efficacy. In addition, a more extensive and robust molecular analysis of all the participant samples will be performed as part of the trial such that we can refine the molecular classification and better inform on potential response to therapy. In this manner the tolerability of combinations can be evaluated on a small but relevant population and the chance of detecting antitumor activity is potentially increased. Furthermore, the goal of the complementary molecular characterization will be to eventually match the therapy with better predictive biomarkers. PRIMARY OBJECTIVES: * To determine the safety and tolerability and estimate the maximum tolerated dose/recommended phase 2 dose (MTD/RP2D) of combination treatment by stratum. * To characterize the pharmacokinetics of combination treatment by stratum. SECONDARY OBJECTIVE: * To estimate the rate and duration of objective response and progression free survival (PFS) by stratum.