Clinical Trial Results for Bone Neoplasm

84 Clinical Trials for Bone Neoplasm

Focus your search

RECRUITING
A Dose Finding Study to Treat Bone Tumor(s)
Description

To determine the Maximum Tolerated Dose (MTD) of CycloSam®, Samarium-153-DOTMP (Sm-153-DOTMP), a radiopharmaceutical that delivers radiation to the bone when injected, given as a tandemly administered pair of doses to subjects with one or more solid tumor(s) in the bone or metastatic solid tumors to the bone that are visible on bone scan.

RECRUITING
Local Bisphosphonate Effect on Recurrence Rate in Extremity Giant Cell Tumor of Bone
Description

The purpose of the clinical study is to investigate whether the local delivery of bisphosphonate as a surgical adjuvant can decrease the chance of a giant cell tumor of bone coming back to the same location. The hypothesis is that the local administration of bisphosphonate will decrease the rate of the tumor returning compared to traditional aggressive surgical removal of the tumor.

RECRUITING
Mg OSTEOCRETE Post-Treatment Outcomes
Description

Mg OSTEOCRETE is a bone substitute used to fill a defect in bone caused by excision of a tumor, orthopaedic hardware that has become loosened, or a trauma-related condition. The aim of this study is to determine the amount of time it takes for bone to heal after treatment with Mg OSTEOCRETE, and to better understand the efficacy of this treatment through clinical and patient-reported outcomes.

RECRUITING
Study of Aerosol Gemcitabine in Patients With Solid Tumors and Pulmonary Metastases
Description

Any time the words "you," "your," "I," or "me" appear, it is meant to apply to the potential participant. The goal of this clinical research study is to find the highest tolerable dose of gemcitabine that can be given by inhalation (breathing it as a mist) to patients with solid tumors that have spread to the lungs from other parts of the body. The safety and side effects of this drug will also be studied. This is an investigational study. Gemcitabine is FDA approved and commercially available for the treatment of pancreatic and lung cancer, and other solid tumors. Its administration by inhalation is investigational. The study doctor can explain how the study drug is designed to work. Up to 44 participants will be enrolled in this study. All will take part at MD Anderson.

RECRUITING
Evaluation of a Simple-Prep Controlled Embolic
Description

The objective of this study is to evaluate the safety and effectiveness of the GPX® Embolic Device when used as indicated for embolization requiring distal vessel penetration in 114 subjects in up to 25 investigational sites in the USA, New Zealand, and Canada.

RECRUITING
Definitive Radiation for High-Risk Spine Metastases
Description

This study is looking at whether patients with cancer that has aggressively spread to the spine can be treated with stereotactic body radiation therapy only and avoid a large spine surgery

RECRUITING
Liquid Biopsy in Ewing Sarcoma and Osteosarcoma As a Prognostic and Response Diagnostic: LEOPARD
Description

This is a prospective multicenter biomarker study evaluating the prognostic impact of ctDNA detection at diagnosis in patients with Ewing sarcoma or osteosarcoma.

RECRUITING
Improving Adolescent and Young Adult Self-Reported Data in ECOG-ACRIN Trials
Description

The purpose of this study is to evaluate feasibility and acceptability of completing PROs among AYAs randomized to Choice PRO vs Fixed PRO.

RECRUITING
The Registry of Oncology Outcomes Associated With Testing and Treatment
Description

This study is to collect and validate regulatory-grade real-world data (RWD) in oncology using the novel, Master Observational Trial construct. This data can be then used in real-world evidence (RWE) generation. It will also create reusable infrastructure to allow creation or affiliation with many additional RWD/RWE efforts both prospective and retrospective in nature.

RECRUITING
Assessment of Healing and Function After Reconstruction Surgery for Bone Sarcomas
Description

The purpose of this study is to look at the amount of function that returns in participants that have reconstruction with bone graft or artificial device and in participants who have tumor surgery plus regenerative osseous surgery. The study will look at the level of function for a period of 3 years after the surgery. Another purpose of this study is to look at how well the bone heals in participants undergoing regenerative surgery

RECRUITING
Donor Natural Killer Cells, Cyclophosphamide, and Etoposide in Treating Children and Young Adults With Relapsed or Refractory Solid Tumors
Description

This phase I trial studies the side effects and best dose of cord blood-derived expanded allogeneic natural killer cells (donor natural killer \[NK\] cells) and how well they work when given together with cyclophosphamide and etoposide in treating children and young adults with solid tumors that have come back (relapsed) or that do not respond to treatment (refractory). NK cells, white blood cells important to the immune system, are donated/collected from cord blood collected at birth from healthy babies and grown in the lab. Drugs used in chemotherapy, such as cyclophosphamide and etoposide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving NK cells together with cyclophosphamide and etoposide may work better in treating children and young adults with solid tumors.

RECRUITING
Genetic Analysis of Pheochromocytomas, Paragangliomas and Associated Conditions
Description

Pheochromocytomas and paragangliomas are neural crest-derived tumors of the nervous system that are often inherited and genetically heterogeneous. Genetic screening is recommended for patients and their relatives, and can guide clinical decisions. However, a mutation is not found in all cases. The aims of this proposal are to: 1) to map gene(s) involved in pheochromocytoma, and 2) identify genotype-phenotype correlations in patients with pheochromocytoma/paraganglioma of various genetic origins.

RECRUITING
An Electronic Health Record (EHR)-Based Comprehensive Bone and Soft Tissue Tumor Registry
Description

Translational studies in cancer research can be impeded by the lack of high-quality clinical data that can be correlated with research questions. This is particularly true in the case of rare diseases, such as bone and soft tissue tumors. It is therefore the purpose of this study to create a prospective EHR-based clinical registry for individuals with bone and soft-tissue tumors.

RECRUITING
Iscador® P (Mistletoe) Immunotherapy for Recurrent Osteogenic Sarcoma
Description

This will be a phase II, single arm study of osteosarcoma patients with fully resected pulmonary metastases. The MTD corresponds to the dosage recommendations of the manufacturer of Iscador® P which is licensed in Sweden, New Zealand, South Korea, Germany and Switzerland for the treatment of solid tumors and precancerous lesions. The study population includes patients with relapse of osteosarcoma in the lung following surgical resection of all gross disease (2nd or greater CR). Following completion of final thoracotomy, they will be treated with Iscador® P at concentrations up to the MTD with surveillance imaging via CT scan to monitor for relapsed disease.

RECRUITING
Palliative Dose Escalated Radiation for Painful Non-Spine Bone Metastases and Painful Non-Bone Metas
Description

The investigators hypothesize that with dose escalation to 40-50 Gy in ten fractions, the complete pain response rate at one month can be increased to 40-50% in painful non-spinal bone metastases. Additionally, the investigators hypothesize that utilizing a fractionation scheme with an escalated biologically equivalent dose (BED) will result in a higher proportion of participants responding to treatment, and will also lead to more durable responses. Furthermore, the investigators hypothesize that with dose escalation to 40-50 Gy in ten fractions, the complete pain response rate at one month can be increased to 35-45% in painful non-bone metastases

RECRUITING
Biology of Osteosarcoma (BOOST) Registry and Biobank
Description

Osteosarcoma is very rare cancer of the bone. The investigator started the BOOST registry and biobank to make sure every patient has the opportunity to participate in research.

Conditions
RECRUITING
Genetic Clues to Chordoma Etiology: A Protocol to Identify Sporadic Chordoma Patients for Studies of Cancer-Susceptibility Genes
Description

Background: Chordoma is a rare, slow growing, often fatal bone cancer derived from remnants of the embryonic notochord. It occurs mostly in the axial skeleton (skull base, vertebrae, sacrum and coccyx), is more frequent in males than females, and has a median age at diagnosis of 58.5 years, with a wide age range. This typically sporadic tumor is often advanced at presentation, and mortality is high due to local recurrence or distant metastases. The usual treatment is surgery, followed by adjuvant radiation therapy. Chemotherapy has not had a significant treatment role. Reports of a small number of families worldwide with two or more relatives with chordoma support a role for susceptibility genes in chordoma etiology. Recently we determined that duplications of the T gene co-segregated with disease in four multiplex chordoma families. The T gene encodes brachyury, a tissue-specific transcription factor that is expressed in notochord cells and is essential for formation and maintenance of the notochord. Some of the other chordoma families that we studied did not have T-gene duplications; the aggregation of chordomas in these families may result from changes in other susceptibility genes or other types of mutations targeting the T gene. We are continuing gene identification studies of multiplex chordoma families at the NIH Clinical Center under protocol 78-C-0039. We also want to determine whether alterations in any identified chordoma susceptibility genes are associated with sporadic chordoma in the general population. Objectives: The major goal of this protocol is to identify sporadic chordoma patients willing to provide germline and tumor DNA for studies to determine the frequency of alterations in chordoma susceptibility genes. Our previous protocols with SEER and Massachusetts General Hospital to identify chordoma patients were limited to residents of specific geographic regions in the U.S. (2 states and 2 metropolitan areas) or to patients with pediatric skull base tumors. This protocol will enroll patients who more broadly represent the age, site and gender distributions of sporadic chordoma in the general U.S. population. Eligibility: Eligible patients are males and females in the U.S. with chordoma diagnosed at any age and at any primary site. Because we want to obtain saliva from all participants, eligibility is limited to patients who will be greater than or equal to age 6 years at the time of enrollment. Design: The study description and contacting information including an e-mail link to the study contact person will be posted on web sites of two chordoma support groups. We will mail study information to be given to patients to colleagues at major medical centers that treat chordoma. The components of the study will be carried out in subjects' homes using materials mailed to them. Up to 100 participants will: 1) complete a self-administered Personal and Family Medical History Questionnaire, 2) collect saliva using a saliva collection kit, and 3) provide permission to obtain medical/pathology records, and paraffin blocks or slides on each primary chordoma. Parents will serve as proxies for minor children. We will recontact patients who report chordoma in at least one blood relative. If we confirm the relative's chordoma diagnosis, we will invite the study subject and selected family members to participate in clinical and gene mapping studies under protocol 78-C-0039. We may also recontact study participants to tell them about any new studies on chordoma etiology. They can decide at that time whether they want to participate in them.

RECRUITING
Effect of Neoadjuvant or Adjuvant Systemic Therapy on Breast Cancers, Bone Marrow Cancer Cells, and Circulating Cancer Cells
Description

The main purpose of this study is to compare genetic markers present on tumor cells before and after chemotherapy.

RECRUITING
Leading in MPNs Beyond Ruxolitinib in Combo With T-Regs
Description

To assess the safety and tolerability of CK0804 as add-on therapy in participants with myelofibrosis, with suboptimal response to ruxolitinib

Conditions
RECRUITING
Zunsemetinib in Combination With Capecitabine in Patients With Hormone Receptor-Positive and HER2-Negative Metastatic Breast Cancer With Bone Metastasis
Description

This is a phase Ib/II study evaluating the safety and efficacy of zunsemetinib (ATI-450) with capecitabine in patients with hormone receptor-positive and HER2-negative (HR+/HER2-) metastatic breast cancer (MBC).

RECRUITING
Safety Study for a Gamma Delta T Cell Product Used with Low Dose Radiotherapy in Patients with Locally Advanced or Metastatic NSCLC or Solid Tumors with Bone Metastases
Description

This is a clinical trial studying intravenous infusions of allogeneic gamma delta T cells after receiving low dose radiotherapy in participants with locally advanced or metastatic non-small cell lung cancer or solid tumors with bone metastases to evaluate the safety and efficacy of combining immunotherapy with radiation therapy.

RECRUITING
Pre-myeloid Cancer and Bone Marrow Failure Clinic Study
Description

This clinical trial tests next generation sequencing (NGS) for the detection of precursor features of pre-myeloid cancers and bone marrow failure syndromes. NGS is a procedure that looks at relevant cancer associated genes and what they do. Finding genetic markers for pre-malignant conditions may help identify patients who are at risk of pre-myeloid cancers and bone marrow failure syndromes and lead to earlier intervention.

RECRUITING
Cancer in Inherited Bone Marrow Failure Syndromes
Description

Background: A prospective cohort of Inherited Bone Marrow Failure Syndrome (IBMFS) will provide new information regarding cancer rates and types in these disorders. Pathogenic variant(s) in IBMFS genes are relevant to carcinogenesis in sporadic cancers. Patients with IBMFS who develop cancer differ in their genetic and/or environmental features from patients with IBMFS who do not develop cancer. These cancer-prone families are well suited for cancer screening and prevention trials targeting those at increased genetic risk of cancer. Carriers of IBMFS pathogenic variant(s) are at increased risk of cancer. The prototype disorder is Fanconi's Anemia (FA); other IBMFS will also be studied. Objectives: To determine the types and incidence of specific cancers in patients with an IBMFS. To investigate the relevance of IBMFS pathogenic variant(s) in the carcinogenesis pathway of the sporadic counterparts of IBMFS-associated cancers. To identify risk factors for IBMFS-related cancers in addition to the primary germline pathogenic variant(s). To determine the risk of cancer in IBMFS carriers. Eligibility: North American families with a proband with an IBMFS. IBMFS suspected by phenotype, confirmed by pathogenic variant(s) in an IBMFS gene, or by clinical diagnostic test. Fanconi's anemia: birth defects, marrow failure, early onset malignancy; positive chromosome breakage result. Diamond-Blackfan anemia: pure red cell aplasia; elevated red cell adenosine deaminase. Dyskeratosis congenita: dysplastic nails, lacey pigmentation, leukoplakia; marrow failure. Shwachman-Diamond Syndrome: malabsorption; neutropenia. Amegakaryocytic thrombocytopenia: early onset thrombocytopenia. Thrombocytopenia absent radii: absent radii; early onset thrombocytopenia. Severe Congenital Neutropenia: neutropenia, pyogenic infections, bone marrow maturation arrest. Pearson's Syndrome: malabsorption, neutropenia, marrow failure, metabolic acidosis; ringed sideroblasts. Other bone marrow failure syndromes: e.g. Revesz Syndrome, WT, IVIC, radio-ulnar synostosis, ataxia-pancytopenia. First degree relatives of IBMFS-affected subjects as defined here, i.e. siblings (half or full), biologic parents, and children. Grandparents of IBMFS-affected subjects. Patients in the general population with sporadic tumors of the types seen in the IBMFS (head and neck, gastrointestinal, and anogenital cancer), with none of the usual risk factors (e.g. smoking, drinking, HPV). Design: Natural history study, with questionnaires, clinical evaluations, clinical and research laboratory test, review of medical records, cancer surveillance. Primary endpoints are all cancers, solid tumors, and cancers specific to each type of IBMFS. Secondary endpoints are markers of pre-malignant conditions, such as leukoplakia, serum or tissue evidence of carcinogenic viruses, and bone marrow morphologic myelodyplastic syndrome or cytogenetic clones....

RECRUITING
Comparing Radiation Therapy to Usual Care for Patients With High-Risk Bone Asymptomatic Metastases
Description

This phase III trial compares the effect of adding radiation therapy to usual care on the occurrence of bone-related complications in cancer patients with high-risk bone metastases that are not causing symptoms (asymptomatic). High-risk bone metastases are defined by their location (including hip, shoulder, long bones, and certain levels of the spine), or size (2 cm or larger). These bone metastases appear to be at higher risk of complications such as fracture, spinal cord compression, and/or pain warranting surgery or radiation treatment. Radiation therapy uses high energy x-rays to kill cancer cells and shrink tumors. The total dose of radiation can be delivered in a single day or divided in smaller doses for up to 5 days of total treatment. Usual care for asymptomatic bone metastases may include drugs that prevent bone loss, in addition to the treatment for the primary cancer or observation (which means no treatment until symptoms appear). Evidence has shown that preventative radiation therapy may be effective in lowering the number of bone metastases-related complications, however, it is not known if this approach is superior to usual care. Adding radiation therapy to usual care may be more effective in preventing bone-related complications than usual care alone in cancer patients with asymptomatic high-risk bone metastases.

RECRUITING
Biology-Guided Radiation Therapy for the Treatment of Patients with Bone Metastases
Description

This clinical trial tests the safety and effectiveness of a single-dose treatment of biology-guided radiation therapy (BgRT) in treating patients with painful cancer that has spread from where it first started (primary site) to the bone (bone metastases). Bone metastases can result in significant pain and reduction in quality of life. Single fraction radiation therapy (SFRT) can produce equivalent pain relief compared to multi-fraction radiation therapy, but SFRT treatments generally lead to higher rates of retreatment. BgRT is a new and innovative form of radiation delivery that uses a signal generated by positron emission tomography to guide external beam radiation therapy. It is a technology breakthrough that uses live, continuously updated data throughout the entire treatment session to determine exactly where to deliver radiotherapy to biologically active tumors. Giving BgRT may be safe and effective in treating patients with painful bone metastases.

RECRUITING
Two Studies for Patients With High Risk Prostate Cancer Testing Less Intense Treatment for Patients With a Low Gene Risk Score and Testing a More Intense Treatment for Patients With a High Gene Risk Score, The PREDICT-RT Trial
Description

This phase III trial compares less intense hormone therapy and radiation therapy to usual hormone therapy and radiation therapy in treating patients with high risk prostate cancer and low gene risk score. This trial also compares more intense hormone therapy and radiation therapy to usual hormone therapy and radiation therapy in patients with high risk prostate cancer and high gene risk score. Apalutamide may help fight prostate cancer by blocking the use of androgen by the tumor cells. Radiation therapy uses high energy rays to kill tumor cells and shrink tumors. Giving a shorter hormone therapy treatment may work the same at controlling prostate cancer compared to the usual 24 month hormone therapy treatment in patients with low gene risk score. Adding apalutamide to the usual treatment may increase the length of time without prostate cancer spreading as compared to the usual treatment in patients with high gene risk score.

RECRUITING
Treatment of Patients With Progressive mCRPC With 177Lu-PSMA-617
Description

The purpose of this study is to evaluate the safety and tolerability of Lutetium-177-PSMA-617 (PLUVICTO) in patients with metastatic castration-resistant prostate cancer (mCRPC) and extensive bone metastases, which appear as a "super scan" pattern on a bone scan. Pluvicto is FDA-approved, but patients with super scan bone scans were previously excluded from the VISION clinical trial, leaving a knowledge gap. The study will enroll up to 30 men with metastatic castration-resistant prostate cancer, with an initial dosing approach that differs from the standard dose. The safety and tolerability of PLUVICTO will be evaluated in this study, with a focus on identifying the optimal dose for this population. This study addresses an important gap in understanding how Pluvicto performs in mCRPC patients with super scan findings.

RECRUITING
Efficacy of Ra-223 in PSMA PET Optimally Selected Patients
Description

This phase II trial studies how well prostate-specific membrane antigen (PSMA) positron emission tomography (PET) scans (in combination with bone scans) work in selecting patients for Ra-223 radiation therapy that have castration-resistant prostate cancer that has spread from where it first started (primary site) to the bones (bone metastasis). Ra-223 is a type of therapy that emits radiation. Radiation gives off energy which can kill tumor cells and other cells that may support the tumor cells. Ra-223 is given by infusion into the veins, where it is absorbed by the bones. PSMA PET is a type of scan used to detect prostate cancer tumors. PSMA is a radioactive tracer that binds to a specific protein that is found on prostate tumor cells. The PSMA tracer shows the areas on the PET scan where tumor cells are active. A PET scan uses a special camera to detect the energy given off from radioactive tracers (such as PSMA) to make detailed pictures of areas where the tracer accumulates in the body. The PET scan is often combined with a magnetic resonance imaging (MRI) or computed tomography (CT) scan, which helps to map the locations where PSMA has accumulated. PSMA PET scans may be able to select patients that will benefit the most from Ra-223 treatment.

RECRUITING
Cryoablation Combined With Stereotactic Body Radiation Therapy for the Treatment of Painful Bone Metastases, the CROME Trial
Description

This trial compares cryoablation combined with stereotactic body radiation therapy to stereotactic body radiation therapy alone to see how well they work in treating patients with pain from cancer that has spread to the bones (bone metastases). Bone is a common site of metastasis in advanced cancer, and bone metastases often result in debilitating cancer-related pain. The current standard of care to treat painful bone metastases is radiation therapy alone. However, many patients do not get adequate pain relief from radiation therapy alone. Another type of therapy that may be used to provide pain relief from bone metastases is cryoablation. Cryoablation is a procedure in which special needles are inserted into the tumor site. These needles grow ice balls at their tips to freeze and kill cancer cells. The goal of this trial is to compare how well cryoablation in combination with radiation therapy works to radiation therapy alone when given to cancer patients to provide pain relief from bone metastases.

RECRUITING
Impact of DNA Repair Pathway Alterations on Sensitivity to Radium-223 in Bone Metastatic Castration-resistant Prostate Cancer
Description

This study investigates how well radium-223 works in treating patients with castration-resistant prostate cancer than has spread to the bones (bone metastases). Prostate cancer is the most common cancer in men and the second leading cause of cancer death. Furthermore, many men with notably advanced disease have been found to have abnormalities in DNA repair. The purpose of this research is to study the role of a DNA repair pathway in prostate cancer, specifically in response to administration of radium-223, an FDA-approved drug known to cause DNA damage to cancerous cells. Understanding how defects in the DNA repair pathway affects radium-223 treatment of prostate, may help doctors help plan effective treatment in future patients.