29 Clinical Trials for Knee Injuries
The objective of this proposal is to investigate the effects of training to use direct electromyographic (dEMG) control of a powered prosthetic ankle on transtibial amputees'. The aimed questions to answer: 1. whether dEMG control will improve balance and postural stability of amputees, 2. whether dEMG control will lead to more natural neuromuscular control and coordination, 3) whether dEMG control will reduce cognitive processes. Participants will go through PT guided training on using dEMG controlled prosthetic ankles and are evaluated for their capability on functional tasks. The results will be compared with a comparison group, which goes through the same training but with their everyday passive prostheses on balance capability, neuromuscular coordination, and cognitive load during locomotion.
Lower limb amputees (LLA) rely on their prosthetic legs to remain active and lead an independent life. For most LLAs, a well-fitted prosthetic socket is the only option to interface with their prosthetic leg, however, it is a real challenge to make a prosthetic socket to interface with residual limbs accurately. One of the reasons is that there lack of accurate approaches to evaluate the pressure distribution on the residual limb accurately and effectively. To overcome this issue, the research team will develop an innovative sensing system, which permits the prosthetists to track the pressure distribution on the residual limb visually. The capability of the new sensing system will be demonstrated on lower limb amputees.
People with leg amputations often experience daily changes in the size (volume) of their residual limb. These daily changes can cause a prosthesis to fit poorly. They can also cause limb problems like pain or skin breakdown. Prosthetic socket systems that accommodate limb volume changes can help address these issues, but they require users to make adjustments throughout the day. The aim of this research is to create a system that will automatically adjust the fit of the socket and create a well-fitting prosthesis for people with leg amputations who experience volume fluctuations when using their prosthesis.
This is a prospective randomized controlled trial with the purpose to determine if patients undergoing isolated posterior cruciate ligament (PCL) reconstruction, or isolated medial collateral ligament (MCL) reconstruction, or combined PCL, anterior cruciate ligament (ACL), fibular collateral ligament (FCL), posterolateral corner (PLC), and MCL reconstructions (or any combination of multiple ligaments) can safely begin partial controlled weightbearing for the first six weeks after surgery.
This is a prospective randomized controlled trial with the purpose to determine if patients undergoing fibular collateral ligament (FCL) reconstruction alone or combined FCL and anterior cruciate ligament (ACL) reconstructions can safely begin full controlled weightbearing for the first six weeks after surgery.
The goal of the research is to create and evaluate a new technology for management of daily residual limb fluid volume fluctuation.
The primary objective of this study is to prospectively determine, at 10 days after orthopedic shoulder or knee surgery, if pulsed electromagnetic field (PEMF) therapy is beneficial in reducing patient-reported post-operative pain, as measured by visual analog scale (VAS). The amount of pain medication taken daily and the physical function outcome scores after surgery and PEMF treatment will also be measured.
The purpose of this study is to look at pain management with opioids versus non-opioids after knee arthroscopy. This study will determine 1) whether the most commonly used non-narcotic medications provide pain relief comparable with the most commonly prescribed narcotic medications in patients undergoing arthroscopic knee surgery, and 2) whether patients' characteristics (gender, pre-operative knee symptoms, workers compensation status and employment status) affect pain level following surgery or medication usage.
The purpose of this study is to determine the sensitivity of a wearable sensor to detect changes in knee joint loading using an experimental knee joint effusion as a model for a common clinical physiological alteration in joint status. The rationale for this project is that it will establish the efficacy of an inexpensive, clinically, and publicly available device that can detect changes in biomechanical loading due to acute physiologic change in joint status. The study will utilize a cross-sectional cohort study design and will seek to enroll 25 male and female healthy adult participants (18-35 yo). Participants will report to the laboratory for three total sessions (Session 1: informed consent and task familiarization; Session 2: testing; Session 3: knee joint status assessment). The primary outcomes of interest include lower extremity thigh and shank acceleration and velocity data (wearable sensor data), lower extermity 3D kinematics and kinetics (motion capture data), and lower extremity muscle function (EMG data) during walking gait, as well as functional balance and patient-reported subjective outcomes. Data will be analyzed by calculating change scores from the pre- to post-experimental effusion outcome measure testing. Paired-samples t-tests and Cohen's d effect sizes will be used to assess changed in wearable sensor data from pre- to post-experimental effusion. Correlation statistics will be used to determine if there are association between the motion capture and wearable sensor data. The potential risks associated with an experimental joint effusion will be addressed by maintaining appropriate sterile conditions and having the participant check-in with the PI (licensed healthcare provider) at 48 hours following testing session.
The purpose of this research is to determine the feasibility of an uneven terrain walking program for lower limb prosthesis users. The training is designed to induce step-to-step variability during walking within a safe environment, with the aim of improving walking skill and confidence.
Retrospective, multi-center, chart review (only to include data that is part of the surgeons' standard practice)
The goal of this proposed project is to gather community-based data from the K2-level Transfemoral Amputee (TFA) population to aid in evidence-based prescription of powered prosthetic knees (i.e., choosing the right device to maximize the benefit for each patient). The investigators intend to use this trial data along with a concurrent study being conducted within the K3-K4 level population to guide the implementation of effective prescriptions towards those that can benefit most from a given device and limit prescription to those who would not see benefit in order to ensure the most judicious use of Department of Defense (DoD) and Veteran's Affairs healthcare dollars. The findings will also be shared with the research community to help drive the design of future devices by identifying what features and functions are most beneficial to which patient populations when the devices are used outside of the laboratory. In summary, more community-based data on how powered prosthetic knees compare with the current standard in TFA populations is needed to allow for improved clinical decision making and clinical outcomes.
The purpose of this study is to determine the effects of real-time gait biofeedback delivered over a 6-week period on early markers of FastOA and conduct 6-week and 6-month follow-up assessments in anterior cruciate ligament reconstructed patients.
While there are a number studies that have reported on the use of blood flow restriction training (BFRT) in the adult population, there is limited information about the use of BFRT in the adolescent population. This study aims to evaluate the use of BFRT in conjunction with traditional anterior ligament reconstruction (ACLR) rehabilitation in adolescents. The purpose of this study is to compare the addition of a BFRT based exercise protocol to a standard ACL rehabilitation protocol in adolescents. Does the addition of BFRT-based exercise improve strength, hypertrophy, and patient reported outcomes after ACLR in the adolescent population?
The purpose of this study is to develop a database that contains movement and rehabilitation-related data collected through the use of wearable sensors and video. This database will serve as a resource for clinicians and researchers interested in the investigation of movement or rehabilitation-related research ideas.
Competitive sport increases risk for musculoskeletal injury (e.g., traumatic knee injury) and may position former athletes for early onset of chronic diseases, chronic pain, poor health-related quality of life, and disability. Quantifying function in former athletes with and without a prior injury and non-athlete controls is critical to understanding long-term health trajectories in athletes and informing potential interventional studies. One modifiable factor that may be associated with long-term health in athletes is physical activity patterns. The purpose of this study is to evaluate strength, function, physical activity, dietary patterns, and cardiometabolic health among current and former competitive athletes and in nonathlete controls to evaluate the impact of prior knee injury and sedentary behavior as two potential determinants of later poor health and reduced function.
The purpose of the proposed study is to evaluate the efficacy of dronabinol for postoperative pain after arthroscopic surgery of the knee. The investigators hypothesize that dronabinol will relieve pain, reduce opioid consumption and will result in few negative side effects. If this pilot study shows promising results the investigators will expand the trial to include additional arthroscopic surgeries (hip, shoulder) and other types of orthopaedic surgery.
This research study is designed to allow health care professionals and researchers to answer many questions about whether a new type of physical therapy called blood flow restriction training (called BFRT) will improve recovery for those with patellar instability.
The purpose of this study is to test whether measures of balance and agility can help predict if a Service Member may be at risk for an injury to their legs before beginning their school and training.
The purpose of this study is to compare two biologic methods for the treatment of articular cartilage defects in the knee. The first method, microfracture, is the standard of care and is routinely used to recruit cells from the subchondral bone marrow to the site of cartilage loss. The second method is the application of adipose-derived stem cells (ADSCs) to the defect site. In theory, ADSCs on a collagen scaffold should enable the delivery of more specific progenitor cells to the site of injury, resulting in better regeneration and integration of articular cartilage at the site of a defect as compared to the microfracture method.
This study is recruiting current or former athletes who had ACL reconstruction surgery over a year ago and have been diagnosed with knee osteoarthritis (OA). We are doing the research to investigate the effects of extracorporeal shockwave therapy (ESWT) on pain, function, biomechanics, knee range of motion and strength, inflammation, and joint structure and integrity of the knee.
The goal of this study is to determine short-term adaptations (aftereffects) in knee loading after a 20-minute split-belt treadmill training session in patients with ACL reconstruction. Our main question for this aim are: 1. Are training-mediated aftereffects in the knee joint moment greater for tied-belt walking or split-belt walking? 2. Are training-mediated aftereffects in the knee joint moment different between subjects who train early stance knee loading versus subjects who train mid-stance knee loading?
The purpose of this study is to explore patient outcomes associated with, the use of a 3D printed knee extender device, in conjunction with an at-home rehabilitation program, for patients who are performing knee rehabilitation after anterior cruciate ligament (ACL) surgery.
The goal of this randomized clinical trial is to evaluate the effects of vibration on factors related to the risks of post-traumatic knee osteoarthritis and secondary anterior cruciate ligament (ACL) injury in individuals who have undergone anterior cruciate ligament reconstruction surgery (ACLR). The main objectives are to compare the effects of Standard rehabilitation vs. rehabilitation that includes whole body vibration (WBV) or local muscle vibration (LMV) on: * Quadriceps muscle function * Gait biomechanics linked to post-traumatic knee osteoarthritis development * Patient self-report outcomes * MRI indicators of knee joint health and muscle quality * Landing biomechanics linked to secondary ACL injury risk * Evidence-based return-to-physical-activity criteria Participants will be assigned to 1 of 3 groups (standard rehabilitation, standard rehabilitation + WBV, or standard rehabilitation + LMV) and will complete assessments of quadriceps function, gait biomechanics, landing biomechanics, functional ability, patient-report outcomes, and MRI 1, 6, and 12 months after ACLR. Researchers will compare the groups to see if vibration embedded in ACLR rehabilitation improves joint health outcomes.
Background: - Cerebral palsy (CP) is the most common motor disorder in children. CP often causes crouch gait, an abnormal way of walking. Knee crouch has many causes, so no single device or approach works best for everybody. This study s adjustable brace provides many types of walking assistance. Researchers will evaluate brace options to find the best solution for each participant, and whether one solution works best for the group. Objective: - To evaluate a new brace to improve crouch gait in children with CP. Eligibility: * Children 5 17 years old with CP. * Healthy volunteers 5 17 years old. Design: * All participants will be screened with medical history and physical exam. * Healthy volunteers will have 1 visit. They will do motion analysis, EMG, and EEG described below. * Participants with CP will have 6 visits. * Visit 1: \<TAB\>1. Motion analysis: Balls will be taped to participants skin. This helps cameras follow their movement. \<TAB\>2. EMG: Metal discs will be taped to participants skin. They measure electrical muscle activity. \<TAB\>3. Participants knee movement will be tested. \<TAB\>4. Participants will walk 50 meters. \<TAB\>5. Participants legs will be cast to make custom braces. * Visit 2: * Participants will wear their new braces and have them adjusted. * Steps 1 3 will be repeated. * EEG: Small metal discs will be placed on the participants scalp. They record brain waves. * Participants will have electrical stimulation of their knees and practice extending them. * Participants will take several walks with the braces in different settings. * Visits 3 5: participants will repeat the walking and some other steps from visit 2. * Visit 6 will repeat visit 2.
The goal of this clinical trial is to examine the effects of 12 weeks of post-operative use of a novel wearable electrical stimulation knee sleeve device (KneeStim) on post-operative biomechanical function (gait). Participants will be United States Military Academy cadets aged 17-27 years. The main questions it aims to answer are: * Examine the effects of KneeStim wear on cadets' post-operative gait * Examine changes in site-specific skeletal muscle mass * Examine the changes in patient-reported outcomes * Assess time to return to full duty * Compare Bioelectrical Impedance Analysis (BIA) measurements to Magnetic Resonance Imaging (MRI) measurements (total thigh volume) * Determine the concurrent criterion validity of the KneeStim device compared to gold- standard metrics (3D Motion Capture) Participants will undergo body composition analysis, MRI, strength testing, standard of care rehabilitation, gait analysis, and complete surveys. Participants will wear the KneeStim during their standard of care rehabilitation visits for the first 5 weeks post-operative, and throughout daily tasks from 6-12 weeks. Researchers will compare a control group (standard of care + KneeStim controlled low intensity) to an experimental group (standard of care + KneeStim flexible intensity) to assess the aims previously mentioned..
The goal of this pilot randomized clinical trial is to look into the efficacy of concentrated bone marrow aspirate (cBMA) in improving post traumatic osteoarthritis (PTOA) symptoms in patients undergoing revision anterior cruciate ligament reconstruction surgery. The main questions it aims to answer are whether clinical outcomes, such as pain, are improved in patients who get cBMA with surgery, if there is a change in circulating markers of inflammation and what part of the cellular and molecular composition of cBMA may explain its effects.
This is a multicenter randomized, placebo-controlled trial to assess whether a 6-month course of oral montelukast after ACL reconstruction reduces systemic markers of inflammation and biochemical and imaging biomarkers of cartilage degradation. This study will specifically target older ACL reconstruction patients with concomitant meniscal injuries as this group is at greatest risk of rapid PTOA progression. Patients will randomly be assigned to receive oral montelukast (10 mg) versus placebo daily for 6 months after surgery.
Background: People with cerebral palsy, spina bifida, muscular dystrophy, or spinal cord injury often have muscle weakness and problems controlling how their legs move. This can affect how they walk. The NIH has designed a robotic device (exoskeleton) that can be worn on the legs while walking. The wearable robot offers a new form of gait training. Objective: To learn whether a robotic device worn on the legs can improve walking ability in those with a gait disorder. Eligibility: People aged 3 to 17 years with a gait disorder involving the knee joint. Design: Participants will be screened. They will have a physical exam. Their walking ability will be tested. Participants will have markers taped on their body; they will walk while cameras record their movements. They will undergo other tests of their motor function and muscle strength. The study will be split into three 12-week phases. During 1 phase, participants will continue with their standard therapy. During another phase, participants will work with the exoskeleton in a lab setting. Their legs will be scanned to create an exoskeleton with a customized fit. The exoskeleton operates in different modes: in exercise mode, it applies force that makes it difficult to take steps; in assistance mode, it applies force meant to aid walking; in combination mode, it alternates between these two approaches. During the third phase, participants may take the exoskeleton home. They will walk in the device at least 1 hour per day, 5 days per week, for 12 weeks. Participants walking ability will be retested after each phase....