24 Clinical Trials for Lung Injury
The study will have two separate patient cohorts: Cohort 1 will include patients with newly diagnosed chronic graft versus host disease (GVHD), whereas cohort 2 will include patients with newly diagnosed chronic lung disease (CLD). For cohort 1, the primary objective will be to characterize PRM metrics at the onset of chronic GVHD and determine if a PRM signature is present that will predict 1-year CLD free survival. For cohort 2, the primary objective will focus on characterizing PRM at the onset of CLD and determine if PRM can predict the trajectory in lung function decline in affected patients.
The purpose of the study is to better understand the mechanisms of lung injury from ozone exposure. Subjects will participate in two exposure sessions: filtered air and 0.2 ppm ozone. The exposure visits will be at least 2 weeks apart. Subjects will be asked to produce sputum through coughing after each exposure. The samples will be analyzed for macrophage activity.
The goal of this observational clinical trial is to learn about the role white blood cells (macrophages) play in lung inflammation in people with Acute Respiratory Distress Syndrome (ARDS). The main questions it aims to answer are: 1. How does the immune system respond to different kinds of lung injury and inflammation and how do those processes differ from each other? 2. What roles do the cells that live in the lungs (macrophages) play in turning off inflammation? How does their role differ from other cells that are called to the lung to help repair injury (recruited macrophages)? 3. Will more frequent testing of lung cell samples help reduce the time it takes to start treatment for ventilator-associated pneumonia (VAP) and therefore reduce the rates of initial therapy failure? Participants will be in the intensive care unit (ICU) on a mechanical ventilator (machine that helps patients breathe) because they have ARDS or are on a mechanical ventilator for some other reason (control group). The following will happen: 1. Participants will be given 100% oxygen through the breathing machine (mechanical ventilator) for 3-5 minutes. This is called pre-oxygenation. 2. A lung specialist (pulmonologist), a member of Dr. Janssen's research team, or respiratory therapist will place small amount of saline into the lung using a long catheter going through the breathing tube. 3. The fluid will be removed with suction and will be sent to the laboratory for testing. 4. This will be repeated two more times over the course of 10 days, or less if participants are taken off of the ventilator. The procedure will be performed no more than three times. 5. Two nasal brushings will be taken from the participants' nose. 6. Approximately 3 tablespoons of blood will be removed by putting a needle into the participants vein. This is the standard method used to obtain blood for tests. A total of 9 tablespoons will be taken for research purposes over the course of this study 7. Data including the participants age, sex, severity of illness, and other medical conditions will be recorded to determine how these can affect the white blood cells. 8. If bacteria are isolated from the fluid in the participants lung, the participants' physician may choose to place the participants on antibiotics to treat an infection. 9. A follow-up phone call may be made by a member of the research team after discharge from the hospital. At this time, the participant may be invited to participate in the Post-ICU clinic at National Jewish Health.
Acute lung injury (ALI) following cardiopulmonary bypass (CPB) is a serious complication, often prolonging the length of stay in ICU and potentially dealing to mortality. The objective of this study is to assess the mechanism of CPB-mediated acute lung injury in pediatric patients.
Hematopoietic stem cell transplant (HSCT) is an effective but toxic therapy and pulmonary morbidity affects as many as 25% of children receiving transplant. Early pulmonary injury includes diffuse alveolar hemorrhage (DAH), thrombotic microangiopathy (TMA) interstitial pneumonitis (IPS) and infection, while later, bronchiolitis obliterans is a complication of chronic GVHD associated with severe morbidity and mortality. Improved diagnosis and treatment of pulmonary complications are urgently needed as survival after HSCT improves, and as HSCT is increasingly used for non-malignant disorders such as sickle cell disease. Currently, there are large and important gaps in the investigator's knowledge regarding incidence, etiology and optimal treatment of pulmonary complications. Moreover, young children unable to perform spirometry are often diagnosed late, and strategies for monitoring therapeutic response are limited. This is a prospective multi-institutional cohort study in pediatric patients undergoing allogeneic hematopoietic stem cell transplantation (alloHSCT). Assembly of a large prospective uniformly screened cohort of children receiving HSCT, together with collection of biological samples, will be an effective strategy to identify mechanisms of lung injury, test novel diagnostic strategies for earlier diagnosis, and novel treatments to reduce morbidity and mortality from lung injury after transplant.
The goal of this study is to compare two different ways of helping patients with a condition called sepsis who need help breathing using a machine called a ventilator. The investigators want to study which way of setting the ventilator is better for the lungs. Here are the main questions the investigators want to answer: 1. How does the amount of air in the lungs and the way it moves differ between the two ways? 2. How does the way air spreads out in different parts of the lungs differ between the two ways? In this study, the investigators will take special pictures of the lungs using a machine called a CT scan. The pictures will show us how much the lungs stretch and how much air is in different parts of the lungs. The investigators will compare two different ways of using the ventilator: one personalized for each patient based on their breathing, and another way that is commonly used. By comparing these two ways, the investigators hope to learn which one is better for helping patients with sepsis who need the ventilator. This information can help doctors make better decisions about how to care for these patients and improve their breathing.
Purpose: The primary purpose of this study is to measure pulmonary function, symptoms, and pulmonary inflammatory responses in healthy young adults during and immediately after exposure to a low concentration of ozone (0.070 ppm) or clean air for 6.6 hours while undergoing moderate intermittent exercise. This concentration is the current EPA NAAQS standard for ozone.
Premature babies often need help immediately after birth to open their lungs to air, start breathing and keep their hearts beating. Opening their lungs can be difficult, and once open the under-developed lungs of premature babies will often collapse again between each breath. To prevent this nearly all premature babies receive some form of mechanical respiratory support to aid breathing. Common to all types of respiratory support is the delivery of a treatment called positive end-expiratory pressure, or PEEP. PEEP gives air, or a mixture of air and oxygen, to the lung between each breath to keep the lungs open and stop them collapsing. Currently, clinicians do not have enough evidence on the right amount, or level, of PEEP to give at birth. As a result, doctors around the world give different amounts (or levels) of PEEP to premature babies at birth. In this study, the Investigators will look at 2 different approaches to PEEP to help premature babies during their first breaths at birth. At the moment, the Investigators do not know if one is better than the other. One is to give the same PEEP level to the lungs. The others is to give a high PEEP level at birth when the lungs are hardest to open and then decrease the PEEP later once the lungs are opened and the baby is breathing. Very premature babies have a risk of long-term lung disease (chronic lung disease). The more breathing support a premature baby needs, the more likely the risk of developing chronic lung disease. The Investigators want to find out whether one method of opening the baby's lungs at birth results in them needing less breathing support. This research has been initiated by a group of doctors from Australia, the Netherlands and the USA, all who look after premature babies.
Ventilator associated events (VAE) is a quality metric defined by 48 hours of stability followed by 48 hours of escalation of ventilator settings within the ICU. VAE have been associated with poor outcomes and increases the cost of care, yet is not easy to avoid. Operationalizing all the standards of care known to improve outcomes of those requiring mechanical ventilation in the critical care environment requires a comprehensive approach. ICU teams are encouraged to follow best practice protocols to help liberate and prevent VAEs. Yet, compliance with protocols in most ICUs is suboptimal for multiple reasons. With the advent of computerized mechanical ventilators capable of streaming data from breath to breath and biomedical integration systems (BMDI) such as Capsule (UTMB's BMDI system), software systems have been developed to help identify variances in the standard of care. Automation in near real-time ventilator data feedback has been shown to reduce the incidences of VAEs. This quality improvement project will leverage Vyaire's Respiratory Knowledge Portal (RKP) to collect and store meaningful data regarding ventilator-associated events (VAE), alarm policy compliance, ventilator weaning, and lung protective analytics. Goals: 1. To collect quality metrics utilizing RKP from patients requiring mechanical ventilation over a 3-4-month period for a retrospective baseline analysis. 2. Provide the RKP tool to the ICU team to determine if the use of RKP's webportal and Messenger Zebra phone app improves quality of mechanical ventilation and outcomes. 3. To determine a return on investment (ROI) for a software system like RKP.
The goal of this clinical trial is to learn if using an incentive spirometer can reduce lung problems in people with advanced lung cancer who are receiving chemotherapy and radiation therapy. The main questions the study aims to answer are: Does using an incentive spirometer lower the chances of developing lung inflammation (pneumonitis)? Does it improve overall survival and quality of life? Participants will: Use an incentive spirometer, a device that helps with deep breathing, 10 times every hour while awake. Continue using the spirometer daily during treatment and for up to three months after treatment. Complete quality of life assessments at the start of the study and at 3, 6, and 12 months. Researchers will compare the results to see if the incentive spirometer helps reduce lung problems and improves participants\' well-being during and after their cancer treatment.
This will be a randomized, placebo-controlled, double-blinded, pilot trial with two parallel groups (1:1 ratio) receiving either dexmedetomidine (initial bolus of 1 mcg/kg over 30 min after induction, followed by an infusion rate of 0.3 mcg/kg/hr that will be stopped 30-45 minutes before the end of the surgery or upon reaching maximum dose of 2mcg/kg, whichever comes first) or placebo (normal saline as a bolus followed by maintenance infusion at the same rate of the intervention group). Dexmedetomidine is frequently administered in thoracic surgery. Using local data from the Brigham and Women's Hospital, dexmedetomidine was used in a third of the thoracic procedures performed over the past three years. However, there is no consensus as to the optimal protocol of administration, therefore clinical practice is highly heterogeneous (bolus versus continuous infusion) and mostly depends on the preferences of anesthesia providers. In our institution, the dose of dexmedetomidine is typically 0.5 mcg/kg but varies based on attending preferences and experience. Given the heterogenous practices in dexmedetomidine administration, one of the objectives is to assess the feasibility of adhering to a dexmedetomidine protocol using an initial loading dose of 1 mcg/kg over 30 minutes after induction followed by a continuous infusion of 0.3 mcg/kg/hr. The infusion will stop 30-45 minutes prior to the end of surgery or once a maximum dose of 2mcg/kg has been achieved, whichever comes first. The control group will receive normal saline (similar bolus followed by maintenance infusion at the same rate of the intervention group).
The goal of this study is to investigate the efficacy of \[68Ga\]CBP8 to detect collagen deposition in radiation induced tissue injury.
Previous clinical trials in adults with acute respiratory distress syndrome (ARDS) have demonstrated that ventilator management choices can improve Intensive Care Unit (ICU) mortality and shorten time on mechanical ventilation. This study seeks to scale an established Clinical Decision Support (CDS) tool to facilitate dissemination and implementation of evidence-based research in mechanical ventilation of infants and children with pediatric ARDS (PARDS). This will be accomplished by using CDS tools developed and deployed in Children's Hospital Los Angeles (CHLA) which are based on the best available pediatric evidence, and are currently being used in an NHLBI funded single center randomized controlled trial (NCT03266016, PI: Khemani). Without CDS, there is significant variability in ventilator management of PARDS patients both between and within Pediatric ICUs (PICUs), but clinicians are willing to accept CDS recommendations. The CDS tool will be deployed in multiple PICUs, targeting enrollment of up to 180 children with PARDS. Study hypotheses: 1. The CDS tool in will be implementable in nearly all participating sites 2. There will be \> 80% compliance with CDS recommendations and 3. The investigators can implement automatic data capture and entry in many of the ICUs Once feasibility of this CDS tool is demonstrated, a multi-center validation study will be designed, which seeks to determine whether the CDS can result in a significant reduction in length of mechanical ventilation (LMV).
This study plans to learn more about people who are sick in the hospital with a lung infection, or respiratory failure. Respiratory failure, or severe lung failure, is a life-threatening disease. When it happens, the lungs have trouble carrying out their normal function of getting oxygen into the blood, and removing carbon dioxide from the body. Investigators are conducting this study to see what drinking too much alcohol, using tobacco products, or using drugs (both legal and illegal) may do to lung infections and respiratory failure. Subjects are asked to be in this research study because they are thought to have a lung infection and may also have respiratory failure. Alcohol, tobacco, and drug use have been linked to lung infections, respiratory failure, and even death, but the reasons for this aren't known. People who use unhealthy amounts of alcohol, tobacco, and or drugs may be more at risk for lung infections, and for severe complications due to lung infection. Subject participation is important whether or not you use alcohol and or drugs.
The purpose of this study is to see if taking the study drug, Belumosudil, for 52 weeks in addition to your usual care and medication, will prevent Chronic Lung Allograft Dysfunction (CLAD) in participants who have a lung biopsy that shows evidence of rejection or inflammation to the transplanted lung(s). For this study, biopsies that show evidence of Acute Rejection (AR), Lymphocytic Bronchiolitis (LB), Organizing Pneumonia (OP) or Acute Lung Injury (ALI) are referred to as "Qualifying Biopsies"; patients who had evidence of one or more of these conditions on a recent biopsy are eligible for enrollment in this study. Belumosudil is an investigational drug that blocks a molecule in the body that reduces inflammation and scarring and may play a role in the development and progression of CLAD. Belumosudil is a drug approved by the FDA to treat adults and children 12 years and older with chronic graft-versus-host disease (cGVHD), a condition with some similarities to CLAD. The primary objective it to determine the efficacy of treatment with Belumosudil + maintenance immunosuppression (IS) versus placebo + maintenance IS on preventing the subsequent development of probable or definite CLAD, lung retransplant, or death.
Babies who are born prematurely often develop a chronic lung disease called bronchopulmonary dysplasia (BPD). BPD puts babies at higher risk for problems with growth and development. Diuretics, such as furosemide, are frequently used in the management of early BPD). Many clinicians use informal trials of therapy to see if a baby responds to diuretics in the short-term before starting chronic diuretic therapy. Despite frequent use of diuretics, it is unclear how many babies truly respond to therapy and if there are long-term benefits of diuretic treatment. Designing research studies to figure this out has been challenging. The Pragmatic Research on Diuretic Management in Early BPD (PRIMED) study is a feasibility pilot study to help us get information to design a larger trial of diuretic management for BPD. Key questions this study will answer include: (1) Can we use an N-of-1 trial to determine whether a particular baby responds to furosemide? In an N-of-1 trial, a baby is switched between furosemide and placebo to compare that particular infant's response on and off diuretics. It is a more rigorous approach to the informal trials of therapy that are often conducted in clinical care. We hope to learn how many babies have a short-term response to furosemide ("responders"); (2) how many babies will still be on respiratory support at the end of the N-of-1 trial? This will help us determine how many patients would be eligible to randomize to chronic diuretic therapy in the second phase of the larger trail, and (3) if a baby is identified as a short-term responder, how many parents and physicians would be willing to randomize the baby to chronic diuretics (3 months) versus placebo in the longer trial?
Invasive mechanical ventilation is one of the most important and life-saving therapies in the intensive care unit (ICU). In most severe cases, extracorporeal lung support is initiated when mechanical ventilation is insufficient. However, mechanical ventilation is recognised as potentially harmful, because inappropriate mechanical ventilation settings in ICU patients are associated with organ damage, contributing to disease burden. Studies revealed that mechanical ventilation is often not provided adequately despite clear evidence and guidelines. Variables at the ventilator and extracorporeal lung support device can be set automatically using optimization functions and clinical recommendations, but the handling of experts may still deviate from those settings depending upon the clinical characteristics of individual patients. Artificial intelligence can be used to learn from those deviations as well as the patient's condition in an attempt to improve the combination of settings and accomplish lung support with reduced risk of damage.
Approximately 150 patients with acute kidney injury (AKI) associated with acute hypoxemic respiratory failure (AHRF) will be randomized at up to 40 sites. Patients will be randomly assigned to either Auxora or matching placebo. Study drug infusions will occur every 24 hours for five consecutive days for a total of five infusions.
Background: Stem cell transplants (called hematopoietic stem cell transplantation, or HSCT) are used to treat various diseases. But when the cells for this procedure are donated by someone other than the person who receives the HSCT ( allogeneic HSCT ), the recipient has an increased risk of lung inflammation and scarring. This happens when their immune cells attack healthy lung cells. In this natural history study, researchers will look for the best ways to detect developing lung inflammations earlier after an HSCT. Objective: To see if certain tests can detect early signs of lung inflammation in people after HSCT. Eligibility: People aged 5 to 70 years who will have HSCT as part of another NIH study. Design: Participants will undergo these tests prior to their HSCT. These tests will then be repeated regularly for 2 years: Ultra-low dose computed tomography (CT) scans. Participants will lie on a table that slides through a machine; the machine uses X-rays to get pictures of the inside of the body. This type of scan uses less radiation than normal CT scans. Bronchoscopy with lavage: Participants will be sedated. A flexible tube will be inserted through the mouth and into the airways. Salt water will be squirted into the lung, then sucked out to collect cells and fluids from the lung. Another tube with a camera may be inserted into the airways to take pictures. Blood tests. Blood will be drawn every 2 to 4 weeks. Pulmonary function tests. Participants will breathe into a machine to test their lung function. They will see how far they can walk in 6 minutes.
This study assesses for early signs of damage to the heart following chest radiation therapy using both imaging (cardiac magnetic resonance imaging and cardiac positron emission tomography) and changes in blood biomarkers. This study determines if any changes in the heart muscle can be detected either during the course of radiation therapy or shortly thereafter using specialized imaging techniques or blood tests. Cardiac magnetic resonance imaging may be used to help provide information about changes in the heart structure and function following radiation therapy. Positron emission tomography looks at differences in how the heart takes up radioactive sugar which is injected into the vein to assess changes in heart function following radiation therapy. This study may help identify patients at risk of heart issues following radiation therapy to the chest and ultimately help in the development of more effective and safe treatments for cancer in the future.
This study assesses cardiovascular injury and cardiac fitness in patients with non-small cell lung cancer that has spread to nearby tissue or lymph nodes (locally advanced) receiving model based personalized chemoradiation. The goal of this study is to learn more about the risk of developing heart disease as a result of chemoradiation treatment for lung cancer. Researchers also want to learn if the risk can be reduced by using a patient's individual risk profile to guide cancer treatment and help protect the heart.
The purpose of this study is to find out if taking the drug Buspar will increase breathing capacity in individuals with spinal cord injuries.
Patient Power is a patient research network and database (registry) to collect prospective information about demographics, self-reported diagnoses and medications, and willingness to participate in research from participants with rheumatoid arthritis (RA), spondyloarthritis (SpA), other musculoskeletal conditions, chronic neurological conditions like migraine, chronic pulmonary conditions like Chronic Obstructive Pulmonary Disease (COPD), asthma, autoimmune dermatological conditions such as psoriasis, and other chronic inflammatory or immune-mediated conditions. In addition, since patients with chronic conditions often have other co-morbidities like cardiovascular health and obesity-related metabolic disorders, these conditions will also be included. Participants will provide information from their smartphones or personal computers. The information will be used by researchers and clinicians to help patients and their providers make better, more informed decisions about treatment of chronic conditions.
Perioperative fasting has historically been viewed as a low-risk intervention. However, preliminary data indicate that perioperative loss of nutrition and fluids is likely harmful. This study intends to characterize perioperative fasting practices and their potential effects on clinical outcomes through possible effects on patient well-being (anxiety, hunger, thirst), physiology (hypovolemia, hypotension), perioperative aspiration, etc. We hypothesized that in addition to known adverse effects on patients' well-being, prolonged preoperative fasting adversely affects circulating blood volume-related (hypotension, decreased urine output etc.) and glucose metabolism-related (e.g., hypo/hyperglycemia) perioperative physiology. Additional knowledge on the potential adverse effects of preoperative fasting will inform preoperative fasting policies and research interventions that are relevant to hundreds of millions of patients subjected to preoperative/preprocedural fasting worldwide each year.