27 Clinical Trials for Nasopharyngeal Cancer
This clinical trial tests the effect of induction chemotherapy response-guided radiation (de-escalated intensity-modulated radiation therapy \[IMRT\]) compared to standard IMRT in patients with Epstein-Barr virus (EBV)-associated nasopharyngeal cancer. Intensity-modulated radiation therapy (IMRT) is an advanced form of 3-dimensional radiation therapy that uses computer-generated images to show the size and shape of the tumor. Thin beams of radiation of different intensities are aimed at the tumor from many angles. This type of radiation therapy reduces the damage to healthy tissue near the tumor. Radiation therapy sometimes causes unwanted symptoms or side effects, including late effects such as hearing loss and dental problems. The severity of the side effects is related to the radiation dose received and the amount of tissue that received radiation. De-escalation IMRT uses lower doses of radiation based on a good response to induction chemotherapy. Giving de-escalated IMRT may be as effective as standard doses of IMRT in treating patients with EBV-associated nasopharyngeal cancer.
This study aims to investigate toripalimab with chemotherapy in participants with nasopharyngeal cancer.
This phase II trial tests the addition of BMS-986016 (relatlimab) to the usual immunotherapy after initial treatment for nasopharyngeal cancer that has come back after a period of improvement (recurrent) or that has spread from where it first started (primary site) to other places in the body (metastatic). Relatlimab is a monoclonal antibody that may interfere with the ability of tumor cells to grow and spread. The usual approach of treatment is initial treatment with chemotherapy such as the combination of cisplatin (or carboplatin) and gemcitabine, along with immunotherapy such as nivolumab. After the initial treatment is finished, patients may continue to receive additional immunotherapy. Carboplatin is in a class of medications known as platinum-containing compounds. It works in a way similar to the anticancer drug cisplatin, but may be better tolerated than cisplatin. Carboplatin works by killing, stopping or slowing the growth of tumor cells. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Gemcitabine is a chemotherapy drug that blocks the cells from making deoxyribonucleic acid (DNA) and may kill cancer cells. Giving BMS-986016 in addition to the usual immunotherapy after initial treatment may extend the time without the tumor cells growing or spreading longer than the usual approach in patients with recurrent or metastatic nasopharyngeal cancer.
This phase II trial tests how well nivolumab and ipilimumab immunotherapy with or without cabozantinib works in treating patients with nasopharyngeal cancer that has come back (after a period of improvement) (recurrent), has spread from where it first started (primary site) to other places in the body (metastatic), or for which no treatment is currently available (incurable). Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Cabozantinib is in a class of medications called kinase inhibitors. It works by blocking the action of an abnormal protein that signals cancer cells to multiply. This helps slow or stop the spread of cancer cells. Giving immunotherapy with nivolumab and ipilimumab and targeted therapy with cabozantinib may help shrink and stabilize nasopharyngeal cancer.
To evaluate the anti cancer effect of VK 2019 in subjects with EBV related nasopharyngeal carcinoma (NPC) for whom there is no other standard treatment available
The purpose of the research is to test the safety and efficacy of the investigational drug in human subjects with cancer.
This phase II trial tests effects of nivolumab in combination with chemotherapy drugs prior to radiation therapy patients with nasopharyngeal carcinoma (NPC). Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Chemotherapy drugs, such as gemcitabine and cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy x-rays, particles, or radioactive seeds to kill cancer cells and shrink tumors. Researchers want to find out what effects, good and/or bad, adding nivolumab to chemotherapy has on patients with newly diagnosed NPC. In addition, they want to find out if children with NPC may be treated with less radiation therapy and whether this decreases the side effects of therapy.
This is a multicenter, open-label, Phase 1 study that will be conducted in two parts. Part 1 is the dose escalation of APG-5918. Part 2 is the dose expansion of APG-5918. APG-5918 will be administered orally. Patients will be treated in 28-day cycles.
This clinical trial tests the impact of offering hearing tests (audiometry) close to home and remotely on participation in monitoring for treatment-related hearing loss in patients with head and neck squamous cell cancer receiving cisplatin and/or radiation. Cisplatin, a chemotherapy often used to treat head and neck cancers, and radiation given near the ear can cause hearing loss in some patients. Hearing loss can have a major negative impact on quality of life, contributing to social isolation and frustration. Identifying hearing changes may allow treatment changes to prevent further loss. Audiometry measures hearing loss using a graphic record of the softest sounds that a person can hear at various frequencies. It is recommended patients have a hearing test before, during and after treatment to monitor for any hearing loss. This is usually done in the office and performed on the same day as other visits whenever possible, however, patients who live far away or have stage IV cancer, may have more difficulty coming back for hearing tests. Offering close to home and remote audiometry may improve monitoring for hearing loss in patients with head and neck squamous cell cancer receiving cisplatin and/or radiation.
This phase II trial tests how well lovastatin and pembrolizumab work in treating patients with head and neck cancer that has come back after a period of improvement (recurrent) or that has spread from where it first started (primary site) to other places in the body (metastatic). Lovastatin is a drug used to lower the amount of cholesterol in the blood and may also cause tumor cell death. In addition, studies have shown that lovastatin may make the tumor cells more sensitive to immunotherapy. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving lovastatin and pembrolizumab may kill more tumor cells in patients with recurrent or metastatic head and neck cancer.
This phase II trial compares the effectiveness of adding BMX-001 to usual symptom management versus usual symptom management alone for reducing oral mucositis in patients who are receiving chemoradiation for head and neck cancer. Oral mucositis (inflammation and mouth sores) is a common side effect of chemoradiation that can cause pain and difficulty swallowing. Usual management of these side effects typically consists of using mouth rinses and pain medications during treatment and for several weeks after completion of treatment. BMX-001 neutralizes harmful substances in the body, preventing damage to macromolecules such as DNA and minimizes free radical-related toxicity in normal tissues. Adding BMX-001 to usual symptom management may be more effective than usual symptom management alone at reducing oral mucositis in patients receiving chemoradiation for head and neck cancer.
The objective of this study is to evaluate the safety, tolerability, and efficacy of BL-B01D1 in patients with Metastatic or Unresectable Non-Small Cell Lung Cancer (NSCLC) and Other Solid Tumors.
Brief Summary: This study will test the safety, including side effects, and determine the characteristics of a drug called PRO1160 in participants with solid tumors. Participants will have solid tumor or liquid cancer that has spread through the body (metastatic) or cannot be removed with surgery (unresectable). This Phase 1/2 study will have two parts. Part A of the study will find out how much and how frequently PRO1160 should be given to participants. Part B will use the dose and schedule found in Part A to find out how safe PRO1160 is and if it works to treat the diseases under study. The diseases under study will be Renal Cell Carcinoma (RCC),Nasopharyngeal Carcinoma (NPC) and Non-Hodgkin Lymphoma (NHL).
A prospective, open-label, phase 2 study to explore CAIX expression through 89Zirconium-labelled girentuximab deferoxamine (89Zr-girentuximab) PET/CT imaging in patients with solid tumors.
The purpose of this study is to characterize the safety and tolerability of KFA115 and KFA115 in combination with pembrolizumab in patients with select advanced cancers, and to identify the maximum tolerated dose and/or recommended dose.
The primary objective of this study, sponsored by Travera Inc. in Massachusetts, is to validate whether the mass response biomarker has potential to predict response of patients to specific therapies or therapeutic combinations using isolated tumor cells from various specimen formats including malignant fluids such as pleural effusions and ascites, core needle biopsies, fine needle aspirates, or resections.
The therapy of solid tumors has been revolutionized by immune therapy, in particular, approaches that activate immune T cells in a polyclonal manner through blockade of checkpoint pathways such as PD-1 by administration of monoclonal antibodies. In this study, the investigators will evaluate the adoptive transfer of RAPA-201 cells, which are checkpoint-deficient polyclonal T cells that represent an analogous yet distinct immune therapy treatment platform for solid tumors. The administration of polyclonal, metabolically-fit RAPA-201 cells is a novel adoptive T cell therapy approach that is suitable for regenerative medicine efforts. RAPA-201 is a novel immunotherapy product consisting of reprogrammed autologous CD4+ and CD8+ T cells of Th1/Tc1 cytokine phenotype. RAPA-201, which have acquired resistance to the mTOR inhibitor temsirolimus, are manufactured ex vivo from peripheral blood mononuclear cells collected from solid tumor patients using a steady-state apheresis. The novel RAPA-201 manufacturing platform, which incorporates both an mTOR inhibitor (temsirolimus) and an anti-cancer Th1/Tc1 polarizing agent (IFN-alpha) generates polyclonal T cells with five key characteristics: 1. Th1/Tc1: polarization to anti-cancer Th1 and Tc1 subsets, with commensurate down-regulation of immune suppressive Th2 and regulatory T (TREG) subsets; 2. T Central Memory: expression of a T central memory (TCM) phenotype, which promotes T cell engraftment and persistence for prolonged anti-tumor effects; 3. Rapamycin-Resistance: acquisition of rapamycin-resistance, which translates into a multi-faceted anti-apoptotic phenotype that improves T cell fitness in the stringent conditions of the tumor microenvironment; 4. T Cell Quiescence: reduced T cell activation, as evidence by reduced expression of the IL-2 receptor CD25, which reduces T cell-mediated cytokine toxicities such as cytokine-release syndrome (CRS) that limit other forms of T cell therapy; and 5. Reduced Checkpoints: multiple checkpoint inhibitory receptors are markedly reduced on RAPA-201 cells (including but not limited to PD-1, CTLA4, TIM-3, LAG3, and LAIR1), which increases T cell immunity in the checkpoint-replete, immune suppressive tumor microenvironment. This is a non-randomized, open label, multi-site, phase I/II trial of outpatient RAPA-201 immune T cell therapy in patients with advanced metastatic, recurrent, and unresectable solid tumors that have recurred or relapsed after prior immune therapy. Patients must have tumor relapse after at least one prior line of therapy and must have refractory status to the most recent regimen, which must include an anti-PD-(L)1 monoclonal antibody. Furthermore, accrual focuses upon solid tumor disease types potentially amenable to standard-of-care salvage chemotherapy consisting of the carboplatin + paclitaxel (CP) regimen that will be utilized for host conditioning prior to RAPA-201 therapy. Importantly, carboplatin and paclitaxel are "immunogenic" chemotherapy agents whereby the resultant cancer cell death mechanism is favorable for generation of anti-tumor immune T cell responses. Thus, the CP regimen that this protocol incorporates is intended to directly control tumor progression and indirectly promote anti-tumor T cell immunity. Protocol therapy consists of six cycles of standard-of-care chemotherapy (carboplatin + paclitaxel (CP) regimen) administered in the outpatient setting every 28 days (chemotherapy administered on cycles day 1, 8, and 15). RAPA-201 cells will be administered at a target flat dose of 400 X 10\^6 cells per infusion on day 3 of cycles 2 through 6. In the original protocol design, a sample size of up to 22 patients was selected to determine whether RAPA-201 therapy, when used in combination with the CP regimen, represents an active regimen in solid tumors that are resistant to anti-PD(L)-1 checkpoint inhibitor therapy, as defined by a response rate (≥ PR) consistent with a rate of 35%. The first stage of protocol accrual consisted of n=10 patients; to advance to the second protocol accrual stage (accrual of an additional n=12 patients), RAPA-201 therapy must result in a tumor response (≥ PR) in at least 2 out of the 10 initial patients. As described below in the detailed description, this original protocol implementation demonstrated that RAPA-201 represented an active treatment regimen for solid tumor patients, and as such, the protocol was expanded to evaluate the combination of RAPA-201 therapy followed by anti-PD1 maintenance therapy.
This study is to collect and validate regulatory-grade real-world data (RWD) in oncology using the novel, Master Observational Trial construct. This data can be then used in real-world evidence (RWE) generation. It will also create reusable infrastructure to allow creation or affiliation with many additional RWD/RWE efforts both prospective and retrospective in nature.
This trial uses blood tests and questionnaires to study how well participants with head and neck cancer that has spread to other places in the body adhere to swallowing exercises to prevent future disease. Using blood tests to study cytokines (proteins related to the immune system) may help doctors learn if certain levels of cytokines affect whether or not side effects occur and if they put participants at risk for future disease. Questionnaires may help doctors learn about the reasons head and neck cancer participants may or may not follow the swallowing exercises that they are asked to perform after receiving radiation treatments.
The iCaRe2 is a multi-institutional resource created and maintained by the Fred \& Pamela Buffett Cancer Center to collect and manage standardized, multi-dimensional, longitudinal data and biospecimens on consented adult cancer patients, high-risk individuals, and normal controls. The distinct characteristic of the iCaRe2 is its geographical coverage, with a significant percentage of small and rural hospitals and cancer centers. The iCaRe2 advances comprehensive studies of risk factors of cancer development and progression and enables the design of novel strategies for prevention, screening, early detection and personalized treatment of cancer. Centers with expertise in cancer epidemiology, genetics, biology, early detection, and patient care can collaborate by using the iCaRe2 as a platform for cohort and population studies.
The main goal of this phase of the study is to determine if objectively assessed Physical Activity (PA) levels in advanced-cancer patients are associated with health care provider (HCP)-assessed ECOG performance status and overall survival. The purpose is to advance the evidence-base for incorporating objective assessment of Physical Activity (PA) in the context of performance status assessment in advanced cancer patients.
This is an open label, multicenter, phase 1/2 study to assess the safety/tolerability and preliminary clinical activity of STAR0602 as a single agent administered intravenously in participants with advanced solid tumors that are antigen-rich.
RATIONALE: Studying samples of sputum and tissue in the laboratory from patients with dysplasia or cancer may help doctors identify and learn more about biomarkers related to cancer. It may also help the study of cancer in the future. PURPOSE: This laboratory study is looking at biomarkers in patients with respiratory tract dysplasia or lung cancer, head and neck cancer, or aerodigestive tract cancer.
RATIONALE: Collecting and storing samples of tissue, saliva, and blood from patients with cancer and from healthy participants to study in the laboratory may help the study of cancer in the future. PURPOSE: This research study is collecting and storing tissue samples from patients with head and neck cancer and from healthy participants.
To learn about the symptoms and changes our patients experience while receiving treatment for sinonasal or nasopharyngeal cancer
This phase II trial tests whether nivolumab in combination with cabozantinib works in patients with mucosal melanoma. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Cabozantinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. It works by blocking the action of an abnormal protein that signals tumor cells to multiply. This helps stop the spread of tumor cells. Giving nivolumab in combination with cabozantinib could prevent cancer from returning.
The purpose of this study is to investigate how effective the study drug IPI-549 is against types of cancers. IPI-549 is considered experimental because it is not approved by the US Food and Drug Administration (FDA) for the treatment of cancer. Patients will be treated with 2 weeks of IPI-549, a specific PI3Kγ inhibitor. Tumor tissue for research purposes through core biopsies will be obtained prior to initiation of IPI-549 and at surgery.