Search clinical trials by condition, location and status
This clinical trial tests the effect of induction chemotherapy response-guided radiation (de-escalated intensity-modulated radiation therapy \[IMRT\]) compared to standard IMRT in patients with Epstein-Barr virus (EBV)-associated nasopharyngeal cancer. Intensity-modulated radiation therapy (IMRT) is an advanced form of 3-dimensional radiation therapy that uses computer-generated images to show the size and shape of the tumor. Thin beams of radiation of different intensities are aimed at the tumor from many angles. This type of radiation therapy reduces the damage to healthy tissue near the tumor. Radiation therapy sometimes causes unwanted symptoms or side effects, including late effects such as hearing loss and dental problems. The severity of the side effects is related to the radiation dose received and the amount of tissue that received radiation. De-escalation IMRT uses lower doses of radiation based on a good response to induction chemotherapy. Giving de-escalated IMRT may be as effective as standard doses of IMRT in treating patients with EBV-associated nasopharyngeal cancer.
This study aims to investigate toripalimab with chemotherapy in participants with nasopharyngeal cancer.
This phase II trial tests the addition of BMS-986016 (relatlimab) to the usual immunotherapy after initial treatment for nasopharyngeal cancer that has come back after a period of improvement (recurrent) or that has spread from where it first started (primary site) to other places in the body (metastatic). Relatlimab is a monoclonal antibody that may interfere with the ability of tumor cells to grow and spread. The usual approach of treatment is initial treatment with chemotherapy such as the combination of cisplatin (or carboplatin) and gemcitabine, along with immunotherapy such as nivolumab. After the initial treatment is finished, patients may continue to receive additional immunotherapy. Carboplatin is in a class of medications known as platinum-containing compounds. It works in a way similar to the anticancer drug cisplatin, but may be better tolerated than cisplatin. Carboplatin works by killing, stopping or slowing the growth of tumor cells. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Gemcitabine is a chemotherapy drug that blocks the cells from making deoxyribonucleic acid (DNA) and may kill cancer cells. Giving BMS-986016 in addition to the usual immunotherapy after initial treatment may extend the time without the tumor cells growing or spreading longer than the usual approach in patients with recurrent or metastatic nasopharyngeal cancer.
This phase II trial tests how well nivolumab and ipilimumab immunotherapy with or without cabozantinib works in treating patients with nasopharyngeal cancer that has come back (after a period of improvement) (recurrent), has spread from where it first started (primary site) to other places in the body (metastatic), or for which no treatment is currently available (incurable). Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Cabozantinib is in a class of medications called kinase inhibitors. It works by blocking the action of an abnormal protein that signals cancer cells to multiply. This helps slow or stop the spread of cancer cells. Giving immunotherapy with nivolumab and ipilimumab and targeted therapy with cabozantinib may help shrink and stabilize nasopharyngeal cancer.
To evaluate the anti cancer effect of VK 2019 in subjects with EBV related nasopharyngeal carcinoma (NPC) for whom there is no other standard treatment available
The purpose of the research is to test the safety and efficacy of the investigational drug in human subjects with cancer.
This phase II trial tests effects of nivolumab in combination with chemotherapy drugs prior to radiation therapy patients with nasopharyngeal carcinoma (NPC). Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Chemotherapy drugs, such as gemcitabine and cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy x-rays, particles, or radioactive seeds to kill cancer cells and shrink tumors. Researchers want to find out what effects, good and/or bad, adding nivolumab to chemotherapy has on patients with newly diagnosed NPC. In addition, they want to find out if children with NPC may be treated with less radiation therapy and whether this decreases the side effects of therapy.
This is a multicenter, open-label, Phase 1 study that will be conducted in two parts. Part 1 is the dose escalation of APG-5918. Part 2 is the dose expansion of APG-5918. APG-5918 will be administered orally. Patients will be treated in 28-day cycles.
This phase Ib trial tests the safety, side effects and best dose of tumor membrane vesicle (TMV) vaccine therapy alone and in combination with pembrolizumab and evaluates how well it works in treating patients with head and neck squamous cell cancer that has come back after a period of improvement (recurrent) or that has spread from where it first started (primary site) to other places in the body (metastatic). Vaccines made from a person's tumor cells, such as TMV vaccines, may help the body build an effective immune response to kill tumor cells. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving TMV vaccine therapy alone or with pembrolizumab may be safe, tolerable and/or effective in treating patients with recurrent and/or metastatic head and neck squamous cell cancer.
This clinical trial tests the impact of offering hearing tests (audiometry) close to home and remotely on participation in monitoring for treatment-related hearing loss in patients with head and neck squamous cell cancer receiving cisplatin and/or radiation. Cisplatin, a chemotherapy often used to treat head and neck cancers, and radiation given near the ear can cause hearing loss in some patients. Hearing loss can have a major negative impact on quality of life, contributing to social isolation and frustration. Identifying hearing changes may allow treatment changes to prevent further loss. Audiometry measures hearing loss using a graphic record of the softest sounds that a person can hear at various frequencies. It is recommended patients have a hearing test before, during and after treatment to monitor for any hearing loss. This is usually done in the office and performed on the same day as other visits whenever possible, however, patients who live far away or have stage IV cancer, may have more difficulty coming back for hearing tests. Offering close to home and remote audiometry may improve monitoring for hearing loss in patients with head and neck squamous cell cancer receiving cisplatin and/or radiation.