17 Clinical Trials for Orthostatic Hypotension
The purpose of this study is to identify the effects of non-pharmacological and pharmacological anti-hypotensive treatment interventions on orthostatic hemodynamic responses, symptoms of autonomic dysreflexia and orthostatic hypotension, and levels of fatigue and comfort in hypotensive individuals with SCI.
The objective of this study is to find a more objective and accurate way to assess the efficacy of the treatment for neurogenic orthostatic hypotension. For this purpose, the investigators will use an activity monitor to determine the amount of time patients spend in the upright position (standing and walking; upright time) during 1 week of placebo (a pill with no active ingredients) and 1 week of their regular medication for orthostatic hypotension (midodrine or atomoxetine at their usual doses). Total upright time (i.e. tolerance to standing and walking) will be compared between placebo and active treatment to test the hypothesis that it can be used to assess the efficacy of the treatment for orthostatic hypotension and whether this outcome is superior to the assessment of symptoms using validated questionnaires.
The automated inflatable abdominal binder is an investigational device for the treatment of orthostatic hypotension (low blood pressure on standing) in patients with autonomic failure. The purpose of this study is to determine safety and effectiveness of the automated abdominal binder in improving orthostatic tolerance in these patients.
Compression garments have been shown to be effective in the treatment of orthostatic hypotension in autonomic failure patients. The purpose of this study is to determine the hemodynamic mechanisms by which abdominal compression (up to 40 mm Hg) improve the standing blood pressure and orthostatic tolerance in these patients, and to compare them with those of the standard of care midodrine. The investigators will test the hypothesis that abdominal compression will blunt the exaggerated fall in stroke volume and the increase in abdominal vascular volume during head up tilt.
The goal of this interventional crossover study is to determine the effects of transcutaneous spinal cord stimulation (TSCS) on the ability to perform moderate exercise and regulate core body temperature in the chronic spinal cord injury community. The main questions it aims to answer are: * What are the effects of active TSCS targeted for BP control on exercise endurance time and HR recovery during submaximal arm cycle ergometry (ACE) as compared to sham TSCS in participants with chronic, cervical SCI? * What are the effects of active TSCS on Tcore responses to cool ambient exposure and on subjective reporting of thermal comfort and thermal sensitivity as compared to sham TSCS. Participants will receive sham and active stimulation while using an arm bicycle or while in a cold room. Participants are free to participate in either the exercise phase, the cold room phase, or both phases of this study. Please note that there no expected long term benefits of this study.
This is a Phase 3, multi-center, randomized withdrawal study to evaluate the efficacy and durability of ampreloxetine in participants with MSA and symptomatic nOH after 20 weeks of treatment. This study includes 4 periods: Screening, open label, randomized withdrawal, and long-term treatment extension (LTE).
The purpose of this study is to learn more about the effects of abdominal compression and the medication midodrine, two interventions used for the treatment of orthostatic hypotension (low blood pressure on standing), on hemodynamic markers of cardiovascular risk. The study will be conducted at the Vanderbilt University Medical Center and consists of a screening and 2 testing days, one with abdominal compression and one with midodrine. The total length of the study will be about 5 days.
This study is an observational, prospective genetic study. It aims to obtain DNA for research and testing from patients with PSP, CBS, MSA, and related neurological conditions and their families. Up to 1,000 adults who have been clinically diagnosed with PSP, CBS, MSA, or related neurological conditions will be enrolled. The study intervention involves sequencing of participant blood samples using non-CLIA-approved whole genome sequencing at the National Institutes of Health. Pathogenic variants that are deemed possibly related to these conditions will be confirmed using CLIA-approved testing. The study involves minimal risk to participants.
The goal of this clinical trial is to evaluate the effect of transcutaneous spinal cord stimulation on blood pressure in individuals with an acute spinal cord injury (within 30 days of injury). Blood pressure instability, specifically orthostatic hypotension (a drop in blood pressure when moving lying flat on your back to an upright position), appears early after the injury and often significantly interferes with participation in the critical rehabilitation time period. The main questions it aims to answer are: 1. Can optimal spinal stimulation increase blood pressure and resolve orthostatic symptoms (such as dizziness and nausea) when individuals undergo an orthostatic provocation (a sit-up test)? Optimal stimulation and sham stimulation (which is similar to a placebo treatment) will be compared. 2. What are the various spinal sites and stimulation parameters that can be used to increase and stabilize blood pressure to the normal range of 110-120 mmHg? Participants will undergo orthostatic tests (lying on a bed that starts out flat and then moved into an upright seated position by raising the head of bed by 90° and dropping the base of the bed by 90° from the knee) with optimal and sham stimulation, and their blood pressure measurements will be evaluated and compared.
This project will investigate the effect of spinal cord transcutaneous stimulation on blood pressure in individuals with a chronic spinal cord injury who experience blood pressure instability, specifically, orthostatic hypotension (a drop in blood pressure when moving from lying flat on your back to an upright position). The main questions it aims to answer are: 1. What are the various spinal sites and stimulation parameters that normalize and stabilize blood pressure during an orthostatic provocation (70 degrees tilt)? 2. Does training, i.e., exposure to repeated stimulation sessions, have an effect on blood pressure stability? Participants will undergo orthostatic tests (lying on a table that starts out flat, then tilts upward up to 70 degrees), with and without stimulation, and changes in their blood pressure will be evaluated.
This study aims to learn about the effects of continuous positive airway pressure (CPAP) on people with autonomic failure and high blood pressure when lying down (supine hypertension) to determine if it can be used to treat their high blood pressure during the night. CPAP (a widely used treatment for sleep apnea) involves using a machine that blows air into a tube connected to a mask covering the nose, or nose and mouth, to apply a low air pressure in the airways. The study includes 3-5 days spent in the Vanderbilt Clinical Research Center (CRC): at least one day of screening tests, followed by up to 3 study days. Subjects may be able to participate in daytime and/or overnight studies. The Daytime study consists of 2 study days: one with active CPAP and one with sham CPAP applied for up to 2 hours. The Overnight study consists of 3 study nights: one with active CPAP, one with sham CPAP, both applied for up to 9 hours and one night sleeping with the bed tilted head-up.
Parkinson's disease (PD) is the second most common neurodegenerative disorder worldwide. Besides causing symptoms that impair movement, PD also causes non-motor symptoms, such as problems thinking and orthostatic hypotension (OH), i.e., low blood pressure (BP) when standing. About one-third of people with PD have OH, which can cause sudden, temporary symptoms while upright, including lightheadedness, dizziness, and fainting. People with PD and OH can also experience problems thinking that happen only while upright and not while sitting - this can occur without other symptoms, such as feeling dizzy or faint. However, the level of low BP that can affect thinking remains unknown, and no guidelines exist for treating OH when it happens without symptoms. This is significant because OH could be a treatable risk factor for thinking problems in PD, but OH is often not treated if people do not report obvious symptoms. This project's goal is to determine how BP affects brain function in PD. The proposed experiments will measure BP and brain blood flow continuously in real-time using innovative wearable technology. Persons with PD with OH and without OH will undergo repeated cognitive tests while supine (lying down) and while upright. I will study the associations between BP, thinking abilities, and brain blood flow, and will compare groups with and without OH. These findings could be important because if a certain level of BP correlates with thinking abilities, then treating OH in PD may prevent thinking problems, which would improve health-related quality of life and reduce disability and healthcare costs.
This study looks to characterize gradients of dysfunction in the autonomic nervous system after spinal cord injury. The autonomic nervous system plays key roles in regulation of blood pressure, skin blood flow, and bladder health- all issues that individuals with spinal cord injury typically suffer. Focusing on blood pressure regulation, the most precise metric with broad clinical applicability, the investigators will perform laboratory-based tests to probe the body's ability to generate autonomic responses. For both individuals with spinal cord injury and uninjured controls, laboratory-based experiments will utilize multiple parallel recordings to identify how the autonomic nervous system is able to inhibit and activate signals. The investigators anticipate that those with autonomic dysfunction after spinal cord injury will exhibit abnormalities in these precise metrics. The investigators will further have research participants wear a smart watch that tracks skin electrical conductance, heart rate, and skin temperature, which can all provide clues as to the degree of autonomic dysfunction someone may suffer at home. The investigators will look to see if any substantial connections exist between different degrees of preserved autonomic function and secondary autonomic complications from spinal cord injury. In accomplishing this, the investigators hope to give scientists important insights to how the autonomic nervous system works after spinal cord injury and give physicians better tools to manage these secondary autonomic complications.
The purpose of this study is to learn more about the effects of midodrine and droxidopa, two medications used for the treatment of orthostatic hypotension (low blood pressure on standing), on the veins of the abdomen of patients with autonomic failure. The study will be conducted at Vanderbilt University Medical Center, and consists of 2 parts: a screening and 2 testing days. The total length of the study will be about 5 days. About 34 participants will be screened for the study.
Synucleinopathies are a group of rare diseases associated with worsening neurological deficits and the abnormal accumulation of the protein α-synuclein in the nervous system. Onset is usually in late adulthood at age 50 or older. Usually, synucleinopathies present clinically with slowness of movement, coordination difficulties or mild cognitive impairment. Development of these features indicates that abnormal alpha-synuclein deposits have destroyed key areas of the brain involved in the control of movement or cognition. Patients with synucleinopathies and signs of CNS-deficits are frequently diagnosed with Parkinson disease (PD), dementia with Lewy bodies (DLB) or multiple system atrophy (MSA). However, accumulation of alpha-synuclein and death of nerve cells can also begin outside the brain in the autonomic nerves. In such cases, syncucleinopathies present first with symptoms of autonomic impairment (unexplained constipation, urinary difficulties, and sexual dysfunction). In rare cases, hypotension on standing (a disorder known as orthostatic hypotension) may be the only clinical finding. This "pre-motor" autonomic stage suggests that the disease process may not yet have spread to the brain. After a variable period of time, but usually within 5-years, most patients with abnormally low blood pressure on standing develop cognitive or motor abnormalities. This stepwise evolution indicates that the disease spreads from the body to the brain. Another indication of this spread is that acting out dreams (i.e., REM sleep behavior disorder, RBD) a problem that occurs when the lower part of the brain is affected, may also be the first noticeable sign of Parkinson disease. The purpose of this study is to document the clinical features and biological markers of patients with synucleinopathies and better understand how these disorders evolve over time. The study will involve following patients diagnosed with a synucleinopathy (PD/DLB and MSA) and those believed to be in the "pre-motor" stage (with isolated autonomic impairment and/or RBD). Through a careful series of follow-up visits to participating Centers, we will focus on finding biological clues that predict which patients will develop motor/cognitive problems and which ones have the resilience to keep the disease at bay preventing spread to the brain. We will also define the natural history of MSA - the most aggressive of the synucleinopathies.
This study aims to determine the effects of transcutaneous spinal cord stimulation to increase blood pressure and use that device to increase exercise endurance time and heart rate recovery during arm cycle ergometry. In addition, the investigators will see if the stimulation helps regulate body temperature when in a cool environment.
Patients with autonomic failure are characterized by disabling orthostatic hypotension (low blood pressure on standing), and at least half of them also have high blood pressure while lying down (supine hypertension). Exposure to heat, such as in hot environments, often worsens their orthostatic hypotension. The causes of this are not fully understood. The purpose of this study is to evaluate whether applying local heat over the abdomen of patients with autonomic failure and supine hypertension during the night would decrease their nocturnal high blood pressure while lying down. This will help us better understand the mechanisms underlying this phenomenon, and may be of use in the treatment of supine hypertension.