75 Clinical Trials for Various Conditions
This is a pilot vaccine study in adults with either WHO grade II astrocytoma, oligoastrocytoma or oligodendroglioma. The purpose of this study is test the safety and efficacy of an experimental tumor vaccine made from peptides and Montanide ISA-51 in combination with the study drug Poly-ICLC. Poly-ICLC, manufactured by Oncovir, Inc., has already been received and generally well tolerated by subjects in earlier studies and has been shown to decrease the size of brain tumors in some cases. The immunological and safety data will be used to decide whether a larger study of clinical efficacy is warranted in each of two patient cohorts.
RATIONALE: Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. PURPOSE: This phase II trial is studying how well temozolomide works in treating patients with newly diagnosed anaplastic oligodendroglioma or mixed oligoastrocytoma.
Rationale: Standard therapy for anaplastic oligodendrogliomas and mixed oligoastrocytomas includes radiation and chemotherapy. However, due to the potential long-term central nervous system toxicity from radiation, researchers speculate that it may be better to reserve radiation therapy for progressive disease. In addition, some patients with anaplastic oligodendroglioma and mixed oligoastrocytoma have unusually chemosensitive tumors. Previous research indicates that brain tumor patients with a deletion of the 1p chromosome have a higher response to the chemotherapy drug temozolomide.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Radiation therapy uses high-energy x-rays to damage tumor cells. Combining chemotherapy and radiation therapy may kill more tumor cells. PURPOSE: Phase II trial to study the effectiveness of combining temozolomide with radiation therapy in treating patients who have newly diagnosed anaplastic oligodendrogliomas or mixed anaplastic oligoastrocytomas.
To determine if FDOPA-PET/MRI imaging can predict response to treatment of bevacizumab.
This phase I/II trial studies the side effects and best dose of melphalan when given together with carboplatin, etoposide phosphate, mannitol, and sodium thiosulfate and to see how well they work in treating patients with previously treated brain tumors. Drugs used in chemotherapy, such as melphalan, carboplatin, and etoposide phosphate, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing, or by stopping them from spreading. Osmotic blood-brain barrier disruption (BBBD) uses mannitol to open the blood vessels around the brain and allow cancer-killing substances to be carried directly to the brain. Sodium thiosulfate may help lessen or prevent hearing loss and toxicities in patients undergoing chemotherapy with carboplatin and BBBD. Giving carboplatin, melphalan, etoposide phosphate, mannitol, and sodium thiosulfate together may be an effective treatment for brain tumors.
This research study is evaluating an investigational drug, an oncolytic virus called rQNestin34.5v.2. This research study is a Phase I clinical trial, which tests the safety of an investigational drug and also tries to define the appropriate dose of the investigational drug as a possible treatment for this diagnosis of recurrent or progressive brain tumor.
The best dose of radiation to be given with bevacizumab is currently unknown. This study will use higher doses of radiation with bevacizumab than have been used before. This study will test the safety of radiation given at different doses with bevacizumab to find out what effects, good and/or bad, it has on the patient and the malignant glioma or related brain cancers.
This drug is being developed to treat a type of brain cancer, glioma. This study was developed to evaluate the safety, time to disease progression and survival rates after treatment.
This phase I trial studies the effect of multiple doses of NSC-CRAd-S-pk7 in treating patients with high-grade gliomas that have come back (recurrent). NSC-CRAd-S-pk7 consists of neural stem cells that carry a virus, which can kill cancer cells. Giving multiple doses of NSC-CRAd-S-pk7 may kill more tumor cells.
This phase II trial studies how well temozolomide and radiation therapy work in treating patients with IDH wildtype historically lower grade gliomas or non-histological molecular glioblastomas. Radiation therapy uses high-energy x-rays to kill tumor cells and shrink tumors. Giving chemotherapy with radiation therapy may kill more tumor cells. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. The goal of this clinical research study is to compare receiving new radiation therapy doses and volumes to the prior standard treatment for patients with historically grade II or grade III IDH wild-type gliomas, which may now be referred to as IDH wildtype molecular glioblastomas at some institutions. Receiving temozolomide in combination with radiation therapy may also help to control the disease.
This randomized phase II clinical trial studies the side effects and how well proton beam or intensity-modulated radiation therapy works in preserving brain function in patients with IDH mutant grade II or III glioma. Proton beam radiation therapy uses tiny charged particles to deliver radiation directly to the tumor and may cause less damage to normal tissue. Intensity-modulated or photon beam radiation therapy uses high-energy x-ray beams shaped to treat the tumor and may also cause less damage to normal tissue. It is not yet known if proton beam radiation therapy is more effective than photon-based beam intensity-modulated radiation therapy in treating patients with glioma.
Malignant gliomas have a very poor prognosis with median survival measured in months rather than years. It is a disease in great need of novel therapeutic approaches. Based on the encouraging results of our preclinical studies which demonstrate improved efficacy without added toxicity, the paradigm of delivering a novel oncolytic adenovirus via a neural stem cell line in combination with radiation and chemotherapy is well-suited for evaluation in newly diagnosed malignant gliomas. The standard-of-care allows application of virotherapy as neoadjuvant therapy and assessment of the cooperative effects with radiation/chemotherapy without altering the standard treatment.
The purpose of the study is to confirm the safety of the selected dose and potential toxicity of oncolytic poliovirus (PV) immunotherapy with PVSRIPO for pediatric patients with recurrent WHO grade III or IV malignant glioma, but evidence for efficacy will also be sought. The primary objective is to confirm the safety of the selected dose of PVSRIPO when delivered intracerebrally by convection-enhanced delivery (CED) in children with recurrent WHO Grade III malignant glioma (anaplastic astrocytoma, anaplastic oligoastrocytoma, anaplastic oligodendroglioma, anaplastic pleomorphic xanthoastrocytoma) or WHO Grade IV malignant glioma (glioblastoma, gliosarcoma). A secondary objective is to estimate overall survival (OS) in this population.
This is a pilot, randomized, two arm neoadjuvant vaccine study in human leukocyte antigen-A2 positive (HLA-A2+) adults with World Health Organization (WHO) grade II glioma, for which surgical resection of the tumor is clinically indicated. Co-primary objectives are to determine: 1) the safety of the novel combination of subcutaneously administered IMA950 peptides and poly-ICLC (Hiltonol) and i.v. administered CDX-1127 (Varlilumab) in the neoadjuvant approach; and 2) whether addition of i.v. CDX-1127 (Varlilumab) increases the response rate and magnitude of CD4+ and CD8+ T-cell responses against the IMA950 peptides in post-vaccine peripheral blood mononuclear cell (PBMC) samples obtained from participating patients.
Primary brain tumors are typically treated by surgery, radiation therapy and chemotherapy, either individually or in combination. Present therapies are inadequate, as evidenced by the low 5-year survival rate for brain cancer patients, with median survival at approximately 12 months. Glioma is the most common form of primary brain cancer, afflicting approximately 7,000 patients in the United States each year. These highly malignant cancers remain a significant unmet clinical need in oncology. GBM often has a high expression of EFGR (Epidermal Growth Factor Receptor), which is associated with poor prognosis. Several methods of inhibiting this receptor have been tested, including monoclonal antibodies, vaccines, and tyrosine kinase inhibitors. The investigators hypothesize that in patients with recurring GBM, intracranial superselective intra-arterial infusion of Cetuximab (CTX), at a dose of 250mg/m2 in conjunction with hypofractionated radiation, will be safe and efficacious and prevent tumor progression in patients with recurrent, residual GBM.
This is a pilot neoadjuvant vaccine study in adults with WHO grade II glioma, for which surgical resection of the tumor is clinically indicated. Co-primary objectives are to determine: 1) the safety and feasibility of the neoadjuvant approach; and 2) whether the regimen increases the level of type-1 chemokine CXCL10 and vaccine-specific (i.e., reactive to GBM6-AD) CD8+ T-cells in tumor-infiltrating leukocytes (TILs) in the surgically resected glioma.
By employing a combination of advanced MRI techniques and correlative serum biomarkers of blood brain barrier (BBB) disruption, the investigators plan to develop a powerful, first of its kind clinical algorithm in pediatrics whereby the investigators can measure and identify the window of maximal BBB disruption post MLA to 1) allow for an alternative to surgery in incompletely resected tumors, 2) allow for optimal chemotherapeutic dosing to achieve the greatest benefits and the least systemic side effects and 3) distinguish subsequent tumor progression from long-term MLA treatment effects. Preliminary data in adult imaging studies have shown that the BBB disruption lasts for several weeks following treatment before returning to a low baseline. This pilot therapeutic study will provide preliminary validation in pediatric patients.
This phase I trial studies the side effects and best dose of palbociclib isethionate in treating younger patients with central nervous system tumors that have grown, come back, or not responded to treatment. Palbociclib isethionate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This pilot clinical trial studies gallium Ga 68-edotreotide (68Ga-DOTATOC) positron emission tomography (PET)/computed tomography (CT) in finding brain tumors in younger patients. Diagnostic procedures, such as gallium Ga 68-edotreotide PET/CT imaging, may help find and diagnose brain tumors.
This phase I trial studies the side effects and best dose of carboxylesterase-expressing allogeneic neural stem cells when given together with irinotecan hydrochloride in treating patients with high-grade gliomas that have come back. Placing genetically modified neural stem cells into brain tumor cells may make the tumor more sensitive to irinotecan hydrochloride. Irinotecan hydrochloride may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving carboxylesterase-expressing allogeneic neural stem cells and irinotecan hydrochloride may be a better treatment for high-grade gliomas.
To evaluate 18F-FDOPA PET obtained from PET/CT or PET/MRI imaging in patients with newly diagnosed or recurrent gliomas.
This phase I trial studies the side effects and best dose of ascorbic acid when given together with temozolomide in treating patients with high-grade glioma that has come back. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Ascorbic acid contains ingredients that may prevent or slow the growth of high-grade gliomas. Giving temozolomide with ascorbic acid may kill more tumor cells.
This phase I trial studies the side effects and the safety of injecting HSV1716 (a new experimental therapy) into or near the tumor resection cavity. The injection will be done at the time of surgery. HSV1716 is a virus that has a gene which has been changed or removed (mutated) in such a way that lets the virus multiply in dividing cells of the tumor and kills the tumor cells.
The purpose of this study is to find out what effects, good and/or bad, everolimus (RAD001, also known as Afinitor®) alone or with temozolomide has on the patient and the patient's low-grade glioma. Everolimus is being investigated as an anticancer agent based on its potential to prevent tumor cells from growing and multiplying. Specifically, there is a protein called mTOR that we think helps many tumors to grow, and everolimus blocks the effect of mTOR. Temozolomide is also an anticancer agent that prevents tumor cells from growing and multiplying.
This phase I trial studies the side effects and determines the best dose of genetically modified neural stem cells and flucytosine when given together with leucovorin for treating patients with recurrent high-grade gliomas. Neural stem cells can travel to sites of tumor in the brain. The neural stem cells that are being used in this study were genetically modified express the enzyme cytosine deaminase (CD), which converts the prodrug flucytosine (5-FC) into the chemotherapy agent 5-fluorouracil (5-FU). Leucovorin may help 5-FU kill more tumor cells. The CD-expressing neural stem cells are administered directly into the brain. After giving the neural stem cells a few days to spread out and migrate to tumor cells, research participants take a 7 day course of oral 5-FC. (Depending on when a research participant enters the study, they may also be given leucovorin to take with the 5-FC.) When the 5-FC crosses into brain, the neural stem cells convert it into 5-FU, which diffuses out of the neural stem cells to preferentially kill rapidly dividing tumor cells while minimizing toxicity to healthy tissues. A Rickham catheter, placed at the time of surgery, will be used to administer additional doses of NSCs every two weeks, followed each time by a 7 day course of oral 5-FC (and possibly leucovorin). This neural stem cell-based anti-cancer strategy may be an effective treatment for high-grade gliomas. Funding Source - FDA OOPD
This is a multicenter study evaluating the safety and tolerability of Toca 511 administered intravenously to patients with recurrent or progressive Grade III or Grade IV Gliomas who have elected to undergo surgical removal of their tumor. Patients meeting all of the inclusion and none of the exclusion criteria will receive an initial dose of Toca 511 administered as an intravenous, bolus injection, followed approximately 11 days later by an additional dose injected into the walls of the resection cavity at the time of planned tumor resection. Approximately 6 weeks later, patients will begin treatment with oral Toca FC, an antifungal agent, and repeated every 4 weeks. All patients enrolled in this study will be encouraged to participate in a continuation protocol that enables additional Toca FC administration and the collection of long-term safety and response data.
This phase I trial studies the side effects and the best dose of adavosertib when given together with local radiation therapy in treating children with newly diagnosed diffuse intrinsic pontine gliomas. Adavosertib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Radiation therapy uses high energy x-rays, gamma rays, neutrons, protons, or other sources to kill tumor cells and shrink tumors. Giving adavosertib with local radiation therapy may work better than local radiation therapy alone in treating diffuse intrinsic pontine gliomas.
MicroRNAs (miRNA) are molecular biomarkers that post-transcriptionally control target genes. Deregulated miRNA expression has been observed in diverse cancers. In high grade gliomas, known as glioblastomas, the investigators have identified an oncogenic miRNA, miRNA-10b (mir-10b) that is expressed at higher levels in glioblastomas than in normal brain tissue. This study tests the hypothesis that in primary glioma samples mir-10b expression patterns will serve as a prognostic and diagnostic marker. This study will also characterize the phenotypic and genotypic diversity of glioma subclasses. Furthermore, considering the critical function of anti-mir-10b in blocking established glioblastoma growth, the investigators will test in vitro the sensitivity of individual primary tumors to anti-mir-10b treatment. Tumor, blood and cerebrospinal fluid samples will be obtained from patients diagnosed with gliomas over a period of two years. These samples will be examined for mir-10b expression levels. Patient survival, as well as tumor grade and genotypic variations will be correlated to mir-10b expression levels.
This is a single-center, open-label, non-randomized, Phase I/IIa study to investigate the safety, tolerability, and antitumor efficacy of AXL1717 (picropodophyllin as active agent formulated in an oral suspension; PPP) in patients with recurrent malignant astrocytomas (glioblastoma, gliosarcoma, anaplastic astrocytoma, anaplastic oligodendroglioma, anaplastic oligoastrocytoma, and anaplastic ependymoma). Patients will be treated for up to 5 cycles. A treatment cycle is defined as 28 days+7 days rest (28+7 days during cycle 1 to 4, and 28 days during cycle 5). The following cycle will not be started until the treatment continuation criteria are fulfilled. Concomitant supportive therapies will be allowed.