Clinical Trial Results for Spinal Cord Disorders

35 Clinical Trials for Spinal Cord Disorders

Focus your search

RECRUITING
Multi-speed Ergonomic Wheelchair
Description

Over one million Americans rely on their upper extremities for manual wheelchair propulsion. Shoulder overuse injuries are prevalent among manual wheelchair users and these injuries often result in shoulder pain. Severe shoulder pain can lead some wheelchair users to transition from manual to powered mobility, complicating transportation, and reducing independence in activities of daily living. This project will expand the understanding of a new wheelchair design that allows better positioning of the hand rims and allows for different gearing. The investigators will study steady-state propulsion efficiency with different gear ratios and develop a new system with multiple gear ratios. The advanced gearing will allow for a low gear when initiating movement, going uphill, or when moving over carpet, and then a higher gear option for movements on hard flat level terrain. This system has the potential to dramatically improve shoulder ergonomics and reduce pain in many future manual wheelchair users.

RECRUITING
Remotely Delivered Cognitive Multisensory Rehabilitation for Sensory and Motor Recovery After Spinal Cord Injury
Description

So far, therapies have limited success in functional recovery in adults with chronic SCI. By introducing remote cognitive multisensory rehabilitation (CMR), which has shown significant functional improvements due to neurological recovery when delivered in-person, transformative results that (i) provide a potentially effective new therapy within the healthcare system, accessible to more patients, and (ii) demonstrate brain function changes alongside improved function in chronic SCI are anticipated. The results will inform and justify a large scale federally funded clinical trial.

RECRUITING
Spinal Cord Transcutaneous Stimulation Effect on Blood Pressure in Acute Spinal Cord Injury (SCI)
Description

The goal of this clinical trial is to evaluate the effect of transcutaneous spinal cord stimulation on blood pressure in individuals with an acute spinal cord injury (within 30 days of injury). Blood pressure instability, specifically orthostatic hypotension (a drop in blood pressure when moving lying flat on your back to an upright position), appears early after the injury and often significantly interferes with participation in the critical rehabilitation time period. The main questions it aims to answer are: 1. Can optimal spinal stimulation increase blood pressure and resolve orthostatic symptoms (such as dizziness and nausea) when individuals undergo an orthostatic provocation (a sit-up test)? Optimal stimulation and sham stimulation (which is similar to a placebo treatment) will be compared. 2. What are the various spinal sites and stimulation parameters that can be used to increase and stabilize blood pressure to the normal range of 110-120 mmHg? Participants will undergo orthostatic tests (lying on a bed that starts out flat and then moved into an upright seated position by raising the head of bed by 90° and dropping the base of the bed by 90° from the knee) with optimal and sham stimulation, and their blood pressure measurements will be evaluated and compared.

RECRUITING
The Effect of Transcutaneous Stimulation on Blood Pressure in Spinal Cord Injury (SCI)
Description

This project will investigate the effect of spinal cord transcutaneous stimulation on blood pressure in individuals with a chronic spinal cord injury who experience blood pressure instability, specifically, orthostatic hypotension (a drop in blood pressure when moving from lying flat on your back to an upright position). The main questions it aims to answer are: 1. What are the various spinal sites and stimulation parameters that normalize and stabilize blood pressure during an orthostatic provocation (70 degrees tilt)? 2. Does training, i.e., exposure to repeated stimulation sessions, have an effect on blood pressure stability? Participants will undergo orthostatic tests (lying on a table that starts out flat, then tilts upward up to 70 degrees), with and without stimulation, and changes in their blood pressure will be evaluated.

RECRUITING
Laser Interstitial Thermal Ablation and Stereotactic Radiosurgery for Patients With Spine Metastases
Description

The purpose of this research is to combine two complementary modes of treatment, spinal interstitial laser ablation and stereotactic spine radiosurgery (SSRS) for the treatment for spinal tumors near the spinal cord with an objective to improve tumor control, improve pain control, preserve function, and improve quality of life. We will also assess how effective these combined modes of treatment are in patients with spinal metastasis with an epidural component.

RECRUITING
Locomotor Training With Testosterone to Promote Bone and Muscle Health After Spinal Cord Injury
Description

This pilot study will determine the feasibility of implementing a combinatory rehabilitation strategy involving testosterone replacement therapy (TRT) with locomotor training (LT; walking on a treadmill with assistance and overground walking) in men with testosterone deficiency and walking dysfunction after incomplete or complete spinal cord injury. The investigators hypothesize that LT+TRT treatment will improve muscle size and bone mineral density in men with low T and ambulatory dysfunction after incomplete or complete SCI, along with muscle fundtion and walking recovery in men with T low and ambulatory dysfunction ater incomplete SCI.

RECRUITING
Virtual Walking Therapy for Neuropathic Pain Following Incomplete Spinal Cord Injury
Description

The purpose of this study is to determine if playing a virtual reality walking game can help improve neuropathic pain in adults with incomplete spinal cord injury.

RECRUITING
Effectiveness of the Collaborative Community Clinic for Persons With Spinal Cord Injury and Disease
Description

The investigator is evaluating data stored on the Collaborative Community Clinic data repository (IRB #201811032). Researchers seek to evaluate the effectiveness of the Collaborative Community Clinic (CCC), an occupational therapy student experiential learning clinic for uninsured or under-insured people with spinal cord injury and disease (SCI/D), using participants' initial and follow-up assessment batteries.

RECRUITING
Mobile Manual Standing Wheelchair for SCI
Description

People with spinal cord injuries (SCI) are particularly prone to complications from excessive sitting, because many are not able to stand without support. Excessive sitting after SCI is believed to contribute to pressure injuries, pain, osteoporosis, joint stiffness, spasticity, and worsening bowel and bladder function. The VA has developed, patented, and licensed a mobile manual standing wheelchair (MMSW), and the investigators believe the key feature of being able to wheel around while in a standing position will dramatically change how paralyzed Veterans function in their home and community. If this expanded utility is realized, persons with SCI may naturally spend more time standing and less time sitting. To test these ideas, Veterans with SCI will be randomized to using one of two manual standing wheelchairs at home and in the community for two months.

RECRUITING
Spinal Cord Stimulation for Parkinson's Disease Rehabilitation
Description

This study explores the use of multifunctional, non-invasive spinal cord transcutaneous stimulation (scTS) to address axial motor symptoms, particularly gait dysfunction, in Parkinson's disease (PD). These symptoms, resistant to levodopa and inadequately managed by deep brain stimulation (DBS), arise from maladaptive spinal network changes. A non-invasive approach like scTS could overcome limitations associated with invasive spinal cord stimulation (SCS), which requires surgical implantation and lacks adaptability in stimulation site adjustments. Gait dysfunction in PD stems from disrupted interactions between spinal and supraspinal networks. scTS provides a non-invasive alternative, shown to enhance locomotor functions in conditions such as spinal cord injury, stroke, and cerebral palsy. This study hypothesizes that scTS applied at multiple spinal levels-cervical (C3-C4), thoracic (T11-T12), and lumbar (L1, L2-L3)-can synergistically activate locomotor central pattern generators (CPGs) and improve gait and postural control in PD. Additionally, it is hypothesized that proprioceptive input, combined with scTS, can counteract disruptions in spinal networks and restore voluntary movement. The primary goal is to evaluate the effects of scTS on stepping performance, postural control, and locomotor recovery in PD. Specific objectives include: 1. Enhancing Locomotor Networks * Determine optimal scTS parameters for inducing rhythmic stepping in PD patients. * Assess interactions between spinal and supraspinal networks during imagined stepping under scTS in a gravity-neutral setting. 2. Improving Postural Networks o Evaluate the effectiveness of scTS in restoring postural control and integrating postural-locomotor functions. 3. Facilitating Neuroplasticity for Movement Recovery o Combine scTS with activity-based recovery training to promote adaptive plasticity in spinal and cortical networks, reducing freezing of gait (FOG). The research will measure scTS's capacity to generate coordinated stepping and postural movements, integrate proprioceptive feedback, and induce long-term improvements in gait parameters. By targeting spinal locomotor and postural systems, scTS offers a novel, non-invasive approach to addressing gaps in the management of PD gait dysfunction. This work has the potential to significantly enhance the quality of life for individuals with PD, providing a safe, adaptable, and patient-centered therapeutic solution.

RECRUITING
Exploring the Effects of Spinal Cord Stimulation in Parkinson's Disease.
Description

Parkinson Disease (PD) patients experience a variety of motor issues such as walking difficulties, loss of balance, and freezing while walking, which impacts their quality of life. Some symptoms, like freezing of gait (FOG), do not respond to medications typically used to treat PD. Current surgical procedures used to alleviate PD symptoms also do not always improve FOG. Since many traditional therapies have failed for the treatment of FOG, researchers have proposed the use of newer treatments. Recent research in animal models and clinical human data using SCS has produced promising results, specifically showing improvement in FOG with the use of SCS in patients with PD. The purpose of this study is to evaluate the effectiveness of spinal cord stimulation (SCS) for the management of freezing of gait (FOG) that does not respond to conventional treatments in subjects with Parkinson's disease (PD). The investigators hypothesize that SCS significantly decreases FOG episodes in patients with PD. 1. Assess the safety, tolerability and preliminary evidence of effectiveness of upper thoracic spinal cord stimulation for freezing of gait in Parkinson's (PD) patients. 2. Explore the effects of two SCS programming paradigms on motor, nonmotor and quality of life measures in PD patients with freezing of gait.

RECRUITING
Home Exercise for Individuals With Neurodegenerative Disease
Description

The primary goal of this study is to address the need for targeted therapeutic interventions for impairments that impact walking in related neurodegenerative diseases.

RECRUITING
The Myelin Disorders Biorepository Project
Description

The Myelin Disorders Biorepository Project (MDBP) seeks to collect and analyze clinical data and biological samples from leukodystrophy patients worldwide to support ongoing and future research projects. The MDBP is one of the world's largest leukodystrophy biorepositories, having enrolled nearly 2,000 affected individuals since it was launched over a decade ago. Researchers working in the biorepository hope to use these materials to uncover new genetic etiologies for various leukodystrophies, develop biomarkers for use in future clinical trials, and better understand the natural history of these disorders. The knowledge gained from these efforts may help improve the diagnostic tools and treatment options available to patients in the future.

Conditions
RECRUITING
UTSW NORC Pilot Spinal Cord Injury Dietary Program
Description

The goal of this observational study is to learn about the effects of a 9-week dietician-guided program modified from the National Diabetic Prevention Program (modified DPP-diet) in people with spinal cord injury on body composition and insulin sensitivity. The main question it aims to answer is: Does 9 week modified DPP-diet reduce body fat percentage and insulin resistance? Participants will: Have 9 weeks of Telehealth visit with dietician certified in providing DPP. Visit the laboratory before, immediately and 9 weeks after completion of the modified DPP-diet. Share with the researcher on the perceived benefit and obstacles in implementing the modified DPP-diet as part of their daily activities.

RECRUITING
The Effects of an Acute High-intensity Exercise on Heart and Brain Function in People With Spinal Cord Injury
Description

The heart and brain are regulated by the autonomic nervous system. Control of these organs can be disrupted in people with spinal cord injury (SCI). This may affect their ability to regulate blood pressure during daily activities and process the high-level information. Previous studies show that high-intensity exercise induces better outcomes on heart and information processing ability in non-injured people compared to moderate-intensity exercise. However, it is unknown the effects of high-intensity exercise on heart and brain function in people with SCI. Therefore, this study aims to examine the effects of a single bout of high-intensity interval training on heart and brain function in this people with SCI compared to age- and sex-matched non-injured controls.

RECRUITING
Spinal Cord Stimulation for Respiratory Rehabilitation in Patients With Chronic Spinal Cord Injury
Description

Respiratory complications are among the leading causes of death in patients with chronic spinal cord injury (SCI). Our previous work showed that pulmonary function can be improved by using our original respiratory training method. However, the effectiveness of this intervention is limited due to the disruption of brain-spinal connections and consequently lowered spinal cord activity below the injury level. Our recent studies showed that electrical stimulation of the spinal cord below the level of injury leads to increased ventilation which indicates activation of the spinal cord structures related to respiration. These findings indicate that spinal cord stimulation can be a promising therapeutic additive to the treatment. The goal of this study is to justify the establishment of a new direction in rehabilitation for patients with SCI by using a non-invasive spinal cord stimulation in combination with respiratory training. Our aims are: 1) to evaluate the effects of such stimulation applied to the injured spinal cord on pulmonary function and respiratory muscle activity, and 2) to evaluate the effectiveness and therapeutic mechanisms of the spinal cord stimulation combined with respiratory training. Thirty-six individuals with chronic SCI will be recruited and assigned to three groups to receive respiratory training or spinal cord stimulation alone or a combination of them. All participants will be tested before and after cycles of experimental procedures with/or without stimulation. Our hypotheses will be confirmed if the respiratory training combined with spinal cord stimulation results in the most enhanced positive effects.

RECRUITING
Evaluating Long-term Use of a Pediatric Robotic Exoskeleton (P.REX/Agilik) to Improve Gait in Children With Movement Disorders
Description

Background: People with cerebral palsy, spina bifida, muscular dystrophy, or spinal cord injury often have muscle weakness and problems controlling how their legs move. This can affect how they walk. The NIH has designed a robotic device (exoskeleton) that can be worn on the legs while walking. The wearable robot offers a new form of gait training. Objective: To learn whether a robotic device worn on the legs can improve walking ability in those with a gait disorder. Eligibility: People aged 3 to 17 years with a gait disorder involving the knee joint. Design: Participants will be screened. They will have a physical exam. Their walking ability will be tested. Participants will have markers taped on their body; they will walk while cameras record their movements. They will undergo other tests of their motor function and muscle strength. The study will be split into three 12-week phases. During 1 phase, participants will continue with their standard therapy. During another phase, participants will work with the exoskeleton in a lab setting. Their legs will be scanned to create an exoskeleton with a customized fit. The exoskeleton operates in different modes: in exercise mode, it applies force that makes it difficult to take steps; in assistance mode, it applies force meant to aid walking; in combination mode, it alternates between these two approaches. During the third phase, participants may take the exoskeleton home. They will walk in the device at least 1 hour per day, 5 days per week, for 12 weeks. Participants walking ability will be retested after each phase....

RECRUITING
Brief Prolonged Exposure Therapy Versus Clinical Standard to Reduce Posttraumatic Stress Post Spinal Cord Injury
Description

This study will examine the use brief prolonged exposure (Brief PE) therapy compared to standard clinical care to reduce posttraumatic distress among people who have had a spinal cord injury and are receiving rehabilitation in an inpatient setting.

RECRUITING
Diabetic Neuropathy in Spinal Cord Stimulator Patients
Description

The objective of this study is to assess the effect Spinal Cord Stimulators have toward improving vascular changes of diabetes mellitus in patients eligible for SCS placement based on their condition of painful diabetic neuropathy; we will evaluate improving their disability and quality of life, improving micro-circulatory changes induced by Diabetes Mellitus (DM), improving macro-circulatory changes induced by DM and improving arterial stiffness of the vessels of the lower extremity.

RECRUITING
Natural History Study of Leukoencephalopathy With Brainstem and Spinal Cord Involvement and Lactate Elevation (LBSL)
Description

In this study, we will conduct retrospective chart and imaging reviews and prospective longitudinal virtual assessments of individuals with LBSL.

RECRUITING
Mobile Health Self-Management and Support System for Chronic and Complex Health Conditions
Description

This study will assess the benefits of using mobile health system designed for individuals with chronic and complex health conditions (such as those with Spinal Cord Injury,Cerebral Palsy, Spina Bifida, and Traumatic Brain Injury) to improve their wellness and self-management skills compared to those who receive standard of care only.

RECRUITING
Evaluating a New Knee-Ankle-Foot Brace to Improve Gait in Children With Movement Disorders
Description

Background: - Cerebral palsy (CP) is the most common motor disorder in children. CP often causes crouch gait, an abnormal way of walking. Knee crouch has many causes, so no single device or approach works best for everybody. This study s adjustable brace provides many types of walking assistance. Researchers will evaluate brace options to find the best solution for each participant, and whether one solution works best for the group. Objective: - To evaluate a new brace to improve crouch gait in children with CP. Eligibility: * Children 5 17 years old with CP. * Healthy volunteers 5 17 years old. Design: * All participants will be screened with medical history and physical exam. * Healthy volunteers will have 1 visit. They will do motion analysis, EMG, and EEG described below. * Participants with CP will have 6 visits. * Visit 1: \<TAB\>1. Motion analysis: Balls will be taped to participants skin. This helps cameras follow their movement. \<TAB\>2. EMG: Metal discs will be taped to participants skin. They measure electrical muscle activity. \<TAB\>3. Participants knee movement will be tested. \<TAB\>4. Participants will walk 50 meters. \<TAB\>5. Participants legs will be cast to make custom braces. * Visit 2: * Participants will wear their new braces and have them adjusted. * Steps 1 3 will be repeated. * EEG: Small metal discs will be placed on the participants scalp. They record brain waves. * Participants will have electrical stimulation of their knees and practice extending them. * Participants will take several walks with the braces in different settings. * Visits 3 5: participants will repeat the walking and some other steps from visit 2. * Visit 6 will repeat visit 2.

RECRUITING
Evaluation and Treatment of Neurosurgical Disorders
Description

Objective: This protocol is designed to allow evaluation of participants neurosurgical disorders that receive care within the Surgical Neurology Branch. The participants will receive standard-of-clinical-care evaluation and treatment. The clinical data and samples generated during standard of care treatment will be collected as a part of this study. Study Population: Participants 4 years of age and older with neurosurgical-related conditions seeking care from, or referred to the Surgical Neurology Branch for evaluation are eligible for this protocol. Study Design: This is an observational study. Participants will receive standard-of- clinical-care evaluation and treatment for their neurosurgical condition. Clinical evaluation may include laboratory and radiological studies designed to aid in diagnosis or differential diagnosis of the participant s condition or to facilitate treatment. The evaluations may take place in the outpatient clinic areas or in the inpatient units. Some participants will receive standard-of-care medical or surgical treatment for their disorder. Clinical data, tissue samples or body fluids obtained during standard of care treatment, may be used for research. Additional genetic testing may be performed on subjects and their blood relatives if a genetic mechanism underlying the neurological disorder is suspected. Patients in this study may choose to consent to skin biopsies for research purposes, in which case they will sign an additional consent document for thesethis research procedure. Outcome Measures: No additional research outcome measures will be tracked in this study, as this study is collecting data for potential future use. All outcomes will be those of standard clinical evaluation and treatment. A clinical and research database will be kept of patient s diagnosis, progression, and treatment. Clinical database information may be reported or be used in other studies.

RECRUITING
Exploring the Utility of [18F]3F4AP for Demyelination Imaging
Description

The overall objective is to obtain an assessment of the pharmacokinetics of \[18F\]3F4AP in healthy volunteers and subjects with demyelinating diseases such as mild cognitive impairment (MCI), Alzheimer's Disease (AD), Multiple Sclerosis (MS), Spinal Cord Injury (SCI) and Spinal radiculopathy (SR).

RECRUITING
Role of Endothelial Function in SCI CVD Risk
Description

Individuals with spinal cord injury have heart attacks and strokes more frequently, and much earlier in life. People with spinal cord injuries develop plaque in vessels much faster, and the reasons why are unclear. Doctors generally attributed the increased risk with weight gain and developing diabetes, but many studies have shown that even without these common factors, plaque in vessels is developing more often and faster. Endothelial cells are a single layer of cells that line all vessels in the body and plays an important role in vessel health. Damage to endothelial cells is known to lead to heart attacks and strokes. Past studies on endothelial cells of people with spinal cord injury have been unclear. The investigators have new data that these cells are unhealthy after spinal cord injury a measurement. This includes measuring endothelial health by directly altering its function using a catheter in the arm and measuring small particles in blood called endothelial microvesicles. If the project is successful, the investigators will learn important information on the health of endothelial cells after spinal cord injury. The investigators will also be able to use these markers of endothelial cell function to create treatments to improve vessel health and prevent heart attacks and strokes later in life in people with spinal cord injury.

RECRUITING
Safety, Feasibility, and Efficacy of TSCS on Stabilizing Blood Pressure for Acute Inpatients With SCI
Description

Current forms of pharmacologic and non-pharmacologic treatments for hypotension and orthostatic hypotension (OH) remain inadequate during acute inpatient rehabilitation (AIR) following a traumatic spinal cord injury (SCI). A critical need exists for the identification of safe, practical, and effective treatment options that stabilize blood pressure (BP) after traumatic SCI. Recent published evidence suggests that transcutaneous Spinal Cord Stimulation (TSCS) can be used to raise seated BP, and mitigate the falls in BP during orthostatic repositioning in individuals with chronic SCI. This site-specific project will focus on the use of TSCS to stabilizing seated BP and mitigate the fall in BP during orthostatic repositioning during AIR following traumatic SCI.

RECRUITING
High Intensity Functional Training for Individuals With Neurologic Diagnoses and Their Care Partners
Description

Individuals with and without neurologic diagnoses greatly benefit from participation in regular exercise but the majority are physically inactive. This is an issue for both them and their care partners as their health is often linked. This study aims to examine the long-term physical and psychosocial effects of structured, group-based, high intensity functional training (HIFT) exercise for people with neurologic diagnoses and their care partners.

RECRUITING
Temporary Inactivation of Strong Muscle Sensation to Improve Rehabilitation Interventions in SCI
Description

The investigators are conducting a research study to try to improve rehabilitation interventions for individuals with spinal cord injury (SCI). In this study, the aim is to determine if temporarily numbing non-paralyzed arm muscles with an over-the-counter numbing cream while exercising paralyzed muscles, can improve the strength, function, and sensation of paralyzed muscles after a spinal cord injury.

RECRUITING
Dosing rTMS for Depression Post-SCI
Description

Depression is a leading cause of disability worldwide and is more commonly seen in individual's post-spinal cord injury (SCI) than in the general population. Depression post-SCI impacts an individuals' quality of life and recovery. It has been reported that among Veterans with an SCI, those without depression live longer than those with depression. Thus, depression must be treated appropriately. Repetitive transcranial magnetic stimulation (rTMS) is an FDA-approved treatment for depression, but dosing is based on a motor response or movement in the thumb. Over half of individuals with SCI have some degree of arm or hand impairment, so these individuals might not be eligible for rTMS, or they may receive the wrong dose. This study proposes clinical trial in individuals with depression post-SCI to assess the anti-depressant effect of a novel technique to dose rTMS that does not require a motor response in the thumb. By gaining a better understanding of the application of rTMS for depression post-SCI, the investigators aim to advance the rehabilitative care of Veterans.

RECRUITING
TSCS for Acute SCI
Description

This project will focus on a novel approach to stabilizing blood pressure (BP) during inpatient rehabilitation after acute SCI. After SCI, people have unstable blood pressure, ranging from too low (orthostatic hypotension) to too high (autonomic dysreflexia). Unstable BP often interferes with performing effective physical rehabilitation after SCI. A critical need exists for the identification of safe, practical and effective treatment options that stabilize BP after traumatic SCI. Transcutaneous Spinal Cord Stimulation (TSCS) has several advantages over pharmacological approaches: (1) does not exacerbate polypharmacy, (2) can be activated/deactivated rapidly, and (3) can be applied in synergy with physical exercise. The study team is asking the key question: "What if applying TSCS earlier after injury could prevent the development of BP instability?" To facilitate adoption of TSCS for widespread clinical use, the study team plans to map and develop a parameter configuration that will result in an easy to follow algorithm to maximize individual benefits, while minimizing the burden on healthcare professionals. This project will provide the foundational evidence to support the feasible and safe application of TSCS in the newly injured population, thereby overcoming barriers to engagement in prescribed inpatient rehabilitation regimens that are imposed by BP instability.