Treatment Trials

Search clinical trials by condition, location and status

Free to JoinExpert SupportLatest Treatments

Filter & Search

Clinical Trial Results

Showing 1-10 of 33 trials for Rhabdomyosarcoma
Recruiting

FGFR4 Chimeric Antigen Receptor (CAR) T Cells in Children and Young Adults With Recurrent or Refractory Rhabdomyosarcoma

Maryland

Background: Rhabdomyosarcoma (RMS) is a cancer of soft tissues. It is the most common soft tissue sarcoma seen in children. RMS cancer cells have a protein called FGFR4 on their surface. Researchers want to try a new kind of treatment for RMS: They will collect a person s own T cells, a type of immune cell; then they will change the T cells so they are better able to target the FGFR4 protein and attack RMS tumor cells. The modified T cells are chimeric antigen receptor (CAR) T cells. The treatment in this study is called FGFR4-CAR T cells. Objective: To test FGFR4-CAR T cells in children and young adults with RMS. Eligibility: People aged 3 to 39 years with RMS. The RMS must have failed to respond or returned after at least 2 rounds of standard treatment. Design: Participants will be screened. They will have physical exam, imaging scans, blood tests, and tests of their heart. They may have a tissue sample taken from their tumor. They will undergo apheresis: Blood will be taken from the body through a catheter. The blood will pass through a machine that separates out the T cells, and the remaining blood will be returned to the body. The collected T cells will be taken to a lab to create FGFR4-CAR T cells. Once the FGFR4-CART cells are ready, participants can receive these T cells. For 4 days they will receive drugs to prepare their body for the FGFR4-CAR T cells. After this, the modified T cells will be infused into a vein. Participants will be then monitored closely to watch for any side effects from the CART cells and be followed to see what effect the CART cells have on their tumors. They will have follow-up visits for up to 5 years. Long-term follow-up will be another 10 years.

Recruiting

Treatment of Newly Diagnosed Rhabdomyosarcoma Using Molecular Risk Stratification and Liposomal Irinotecan Based Therapy in Children With Intermediate and High Risk Disease

California · Palo Alto, CA

This is a phase II study to determine safety and efficacy of combining liposomal irinotecan with vincristine alternating with VAC in intermediate-risk patients, liposomal irinotecan with temozolomide and vincristine alternating with VAC in high-risk patients and the chemotherapy combinations when given with concomitant radiation therapy in intermediate and high risk patients. Primary Objective * Estimate event-free survival for intermediate-risk participants treated with VAC and vincristine and liposomal irinotecan (VLI) with the addition of maintenance therapy with vinorelbine and cyclophosphamide. * Estimate the event-free survival for high-risk patients treated with VAC and vincristine, liposomal irinotecan, and temozolomide with the addition of maintenance therapy with vinorelbine and cyclophosphamide. Secondary Objectives * To assess the relation between pharmacogenetic variation in CEP72 genotype and vinca alkaloid (vincristine; vinorelbine) disposition in children with rhabdomyosarcoma. * To assess the relation between the pharmacogenetic variation in drug metabolizing enzymes and drug transporters, and the pharmacokinetics of vinca alkaloids, liposomal irinotecan, and cyclophosphamide in children with rhabdomyosarcoma. * To assess the extent of inter-patient variability in the pharmacokinetics of vinca alkaloids, liposomal irinotecan, and cyclophosphamide in children with rhabdomyosarcoma, and explore possible associations between drug disposition and patient specific covariates (e.g., age, sex, race, weight). * Estimate the cumulative incidence of local recurrence and overall 3-year event-free survival in patients with low-risk disease, intermediate-risk disease or high-risk disease treated with either no adjuvant radiation or minimal volume radiation and compare these outcomes with the outcomes achieved on RMS13.

Recruiting

Evolutionary Therapy for Rhabdomyosarcoma

Alabama · Birmingham, AL

This clinical trial will evaluate 4 different strategies of chemotherapy schedules in newly diagnosed participants with metastatic Fusion Positive (alveolar) Rhabdomyosarcoma. The participant and their physician will choose from: Arm A) a first strike therapy, Arm B) a first strike-second strike (maintenance) therapy, Arm C) an adaptively timed therapy, and Arm D) conventional chemotherapy.

Recruiting

NRSTS2021, A Risk Adapted Study Evaluating Maintenance Pazopanib, Limited Margin, Dose-Escalated Radiation Therapy and Selinexor in Non-Rhabdomyosarcoma Soft Tissue Sarcoma (NRSTS)

Louisiana · Baton Rouge, LA

The study participant has been diagnosed with non-rhabdomyosarcoma (NRSTS). Primary Objectives Intermediate-Risk * To estimate the 3-year event-free survival for intermediate-risk patients treated with ifosfamide, doxorubicin, pazopanib, surgery, and maintenance pazopanib, with or without RT. * To characterize the pharmacokinetics of pazopanib and doxorubicin in combination with ifosfamide in intermediate-risk participants, to assess potential covariates to explain the inter- and intra-individual pharmacokinetic variability, and to explore associations between clinical effects and pazopanib and doxorubicin pharmacokinetics. High-Risk * To estimate the maximum tolerated dose (MTD) and/or the recommended phase 2 dosage (RP2D) of selinexor in combination with ifosfamide, doxorubicin, pazopanib, and maintenance pazopanib in high-risk participants. * To characterize the pharmacokinetics of selinexor, pazopanib and doxorubicin in combination with ifosfamide in high-risk participants, to assess potential covariates to explain the inter- and intra-individual pharmacokinetic variability, and to explore associations between clinical effects and selinexor, pazopanib and doxorubicin pharmacokinetics. Secondary Objectives * To estimate the cumulative incidence of primary site local failure and distant metastasis-free, disease-free, event-free, and overall survival in participants treated on the risk-based treatment strategy defined in this protocol. * To define and describe the CTCAE Grade 3 or higher toxicities, and specific grade 1-2 toxicities, in low- and intermediate-risk participants. * To study the association between radiation dosimetry in participants receiving radiation therapy and the incidence and type of dosimetric local failure, normal adjacent tissue exposure, and musculoskeletal toxicity. * To evaluate the objective response rate (complete and partial response) after 3 cycles for high-risk patients receiving the combination of selinexor with ifosfamide, doxorubicin, pazopanib, and maintenance pazopanib. * To assess the relationship between the pharmacogenetic variation in drug-metabolizing enzymes or drug transporters and the pharmacokinetics of selinexor, pazopanib, and doxorubicin in intermediate- or high-risk patients. Exploratory Objectives * To explore the correlation between radiographic response, pathologic response, survival, and toxicity, and tumor molecular characteristics, as assessed through next-generation sequencing (NGS), including whole genome sequencing (WGS), whole exome sequencing (WES), and RNA sequencing (RNAseq). * To explore the feasibility of determining DNA mutational signatures and homologous repair deficiency status in primary tumor samples and to explore the correlation between these molecular findings and the radiographic response, survival, and toxicity of patients treated on this protocol. * To explore the feasibility of obtaining DNA methylation profiling on pretreatment, post-induction chemotherapy, and recurrent (if possible) tumor material, and to assess the correlation with this and pathologic diagnosis, tumor control, and survival outcomes where feasible. * To explore the feasibility of obtaining high resolution single-cell RNA sequencing of pretreatment, post-induction chemotherapy, and recurrent (if possible) tumor material, and to characterize the longitudinal changes in tumor heterogeneity and tumor microenvironment. * To explore the feasibility of identifying characteristic alterations in non-rhabdomyosarcoma soft tissue sarcoma in cell-free DNA (cfDNA) in blood as a non-invasive method of detecting and tracking changes during therapy, and to assess the correlation of cfDNA and mutations in tumor samples. * To describe cardiovascular and musculoskeletal health, cardiopulmonary fitness among children and young adults with NRSTS treated on this protocol. * To investigate the potential prognostic value of serum cardiac biomarkers (high-sensitivity cardiac troponin I (hs-cTnI), N-terminal pro B-type natriuretic peptide (NT-Pro-BNP), serial electrocardiograms (EKGs), and serial echocardiograms in patients receiving ifosfamide, doxorubicin, and pazopanib, with or without selinexor. * To define the rates of near-complete pathologic response (\>90% necrosis) and change in FDG PET maximum standard uptake value (SUVmax) from baseline to week 13 in intermediate risk patients with initially unresectable tumors treated with induction pazopanib, ifosfamide, and doxorubicin, and to correlate this change with tumor control and survival outcomes. * To determine the number of high-risk patients initially judged unresectable at diagnosis that are able to undergo primary tumor resection after treatment with ifosfamide, doxorubicin, selinexor, and pazopanib. * To identify the frequency with which assessment of volumes of interest (VOIs) of target lesions would alter RECIST response assessment compared with standard linear measurements.

Recruiting

Chemotherapy for the Treatment of Patients With Newly Diagnosed Very Low-Risk and Low Risk Fusion Negative Rhabdomyosarcoma

Alabama · Birmingham, AL

Rhabdomyosarcoma is a type of cancer that occurs in the soft tissues in the body. This phase III trial aims to maintain excellent outcomes in patients with very low risk rhabdomyosarcoma (VLR-RMS) while decreasing the burden of therapy using treatment with 24 weeks of vincristine and dactinomycin (VA) and examines the use of centralized molecular risk stratification in the treatment of rhabdomyosarcoma. Another aim of the study it to find out how well patients with low risk rhabdomyosarcoma (LR-RMS) respond to standard chemotherapy when patients with VLR-RMS and patients who have rhabdomyosarcoma with DNA mutations get separate treatment. Finally, this study examines the effect of therapy intensification in patients who have RMS cancer with DNA mutations to see if their outcomes can be improved.

Recruiting

Targeted Oligometastatic Radiation in Pediatric and Young Adult Patients With Soft Tissue and Bone Sarcoma

District of Columbia · Washington, DC

This study is designed for children, adolescents and young adults undergoing radiation therapy for metastatic sarcoma. The aim of the study is to investigate if the investigators can improve the overall survival of these patients by targeting metastatic sites with radiation.

Recruiting

Phase 1/2 Trial to Evaluate the Safety and Efficacy of PEEL-224 in Combination with Vincristine and Temozolomide in Adolescents and Young Adults with Relapsed or Refractory Sarcomas

Massachusetts · Boston, MA

This research is being done to test a new drug called PEEL-224 in combination with two commercially available drugs, Vincristine and Temozolomide, and to determine how effective this combination of drugs is at treating Ewing Sarcoma (EWS) and Desmoplastic Small Round Cell Tumor (DSRCT), as well as multiple other kinds of sarcomas. The names of the study drugs and biological agents involved in this study are: * PEEL-224 (a type of Topoisomerase 1 inhibitor) * Vincristine (A type of vinca alkaloid) * Temozolomide (A type of alkylating agent) * Pegfilgrastim or Filgrastim (types of Myeloid growth factors)

Recruiting

Alpha/Beta T and B Cell Depletion With Zoledronic Acid for Solid Tumors

Florida · Gainesville, FL

Hematopoietic stem cell transplantation can cure patients with blood cancer and other underlying diseases. αβ-T cell and B cell depletion has been introduced to decrease GVHD and PTLD and has demonstrated effectiveness for hematologic malignancies and non-malignant diseases additionally increasing the donor pool as to allow for haploidentical transplant to safely occur. While solid tumors can be highly chemotherapy sensitive, many remain resistant and require multimodalities of treatment. Immunotherapy has been developed to harness the immune system in fighting solid tumors, though not all have targeted effects. Some solid tumors are treated with autologous transplants; however, they do not always demonstrate an improved event free survival or overall survival. There has been evidence of the use of allogeneic stem cell transplants to provide a graft versus tumor effect, though studies remain limited. By utilizing αβ-T cell and B cell depletion for stem cell transplants and combining with zoledronic acid, the immune system may potentially be harnessed and enhanced to provide an improved graft versus tumor effect in relapsed/refractory solid tumors and promote an improved event-free survival and overall survival. This study will investigate the safety of treatment with a stem cell graft depleted of αβ-T cell and CD19+ B cells in combination with zoledronic acid in pediatric and young adult patients with select solid tumors, as well as whether this treatment improves survival rates in these patients.

Recruiting

Study of Autologous Tumor-Infiltrating Lymphocytes in Pediatric, Adolescent, and Young Adult Participants

Colorado · Aurora, CO

This study is planned to test the safety and tolerability of the TIL regimen. The study will also test how well TIL fights cancer. The study will enroll children, teenagers, and young adults with solid tumors that have returned or are not responding to treatment for whom no effective standard-of-care treatment options exist. Study details include: * The study will last up to 2 years after the TIL infusion (Day 0) for each person. * The treatment will last up to 10 days for each person. * Study visits will be every 2 weeks until Day 42, every 6 weeks until Month 6, and every 3 months until Year 2.

Recruiting

Immunotherapy For Adults With GPC3-Positive Solid Tumors Using IL-15 and IL-21 Armored GPC3-CAR T Cells

Texas · Houston, TX

The body has different ways of fighting infection and disease. No single way seems perfect for fighting cancers. This research study combines two different ways of fighting cancer: antibodies and T cells. Antibodies are types of proteins that protect the body from infectious diseases and possibly cancer. T cells, also called T lymphocytes, are special infection-fighting blood cells that can kill other cells, including cells infected with viruses and tumor cells. Both antibodies and T cells have been used to treat patients with cancers. They have shown promise but have not been strong enough to cure most patients. In order to get them to kill cancers more effectively, in the laboratory, the study team inserted a new gene called a chimeric antigen receptor (CAR) into T cells that makes them recognize cancer cells and kill them. When inserted, this new CAR T cell can specifically recognize a protein found on solid tumors, called glypican-3 (GPC3). To make this GPC3-CAR more effective, the study team also added two genes called IL15 and IL21 that help CAR T cells grow better and stay in the blood longer so that they may kill tumors better. When the study team did this in the laboratory, they found that this mixture of GPC3-CAR,IL15 and IL21 killed tumor cells better when compared with CAR T cells that did not have IL15 plus IL21 in the laboratory. This study will use those cells, which are called 21.15.GPC3-CAR T cells, to treat patients with solid tumors that have GPC3 on their surface. The study team also wanted to make sure that they could stop the 21.15.GPC3-CAR T cells from growing in the blood should there be any bad side effects. In order to do so, they inserted a gene called iCasp9 into the CO-EXIST T cells. This allows us the elimination of 21.15.GPC3-CAR T cells in the blood when the gene comes into contact with a medication called AP1903. The drug (AP1903) is an experimental drug that has been tested in humans with no bad side-effects. This drug will only be used to kill the T cells if necessary due to side effects . The study team has treated patients with T cells that include GPC3. Patients have also been treated with IL-21 and with IL-15. Patients have not been treated with a combination of T cells that contain GPC3, IL-21 and IL-15. To summarize, this study will test the effect of 21.15.GPC3-CAR T cells in patients with solid tumors that express GPC3 on their surface. The 21.15.GPC3-CAR T cells are an investigational product not yet approved by the Food and Drug Administration.