Treatment Trials

Search clinical trials by condition, location and status

Free to JoinExpert SupportLatest Treatments

Filter & Search

Clinical Trial Results

Showing 1-10 of 27 trials for Brain Tumor (Pediatric)
Recruiting

Immunotherapy for Malignant Pediatric Brain Tumors Employing Adoptive Cellular Therapy (IMPACT)

District of Columbia · Washington, DC

This is an open-label phase 1 safety and feasibility study that will employ multi-tumor antigen specific cytotoxic T lymphocytes (TSA-T) directed against proteogenomically determined personalized tumor-specific antigens (TSA) derived from a patient's primary brain tumor tissues. Young patients with embryonal central nervous system (CNS) malignancies typically are unable to receive irradiation due to significant adverse effects and are treated with intensive chemotherapy followed by autologous stem cell rescue; however, despite intensive therapy, many of these patients relapse. In this study, individualized TSA-T cells will be generated against proteogenomically determined tumor-specific antigens after standard of care treatment in children less than 5 years of age with embryonal brain tumors. Correlative biological studies will measure clinical anti-tumor, immunological and biomarker effects.

Recruiting

Radiation Induced Alterations in Resting State Brain Networks in Pediatric Brain Tumor Patients

Missouri · Saint Louis, MO

With modern therapy, the survival rate for pediatric brain tumor patients has significantly improved, with over 70% of patients surviving their disease. However, this progress often comes at the cost of substantial morbidity, with cognitive deficits being the primary obstacle to independent living. Robust predictors of cognitive decline and a comprehensive understanding of the underlying mechanisms of cognitive injury remain elusive. This study will prospectively investigate alterations in brain resting state networks following radiation therapy using functional imaging. The hypothesis is that radiation therapy leads to dose-dependent alterations in functional connectivity in the networks associated with higher level cognition, ultimately leading to cognitive decline.

Recruiting

Intra-Tumoral Injections of Natural Killer Cells for Recurrent Malignant Pediatric Brain Tumors

Alabama · Birmingham, AL

This phase I trial tests the safety, side effects, and best dose of ex vivo expanded natural killer cells in treating patients with cancerous (malignant) tumors affecting the upper part of the brain (supratentorial) that have come back (recurrent) or that are growing, spreading, or getting worse (progressive). Natural killer (NK) cells are immune cells that recognize and get rid of abnormal cells in the body, including tumor cells and cells infected by viruses. NK cells have been shown to kill different types of cancer, including brain tumors in laboratory settings. Giving NK cells from unrelated donors who are screened for optimal cell qualities and determined to be safe and healthy may be effective in treating supratentorial malignant brain tumors in children and young adults.

Recruiting

High-Intensity Interval Exercise in Young Adult Survivors of Pediatric Brain Tumors: A Pilot Feasibility Study

Massachusetts · Boston, MA

The purpose of this study is to determine whether a 16-week virtual, home-based, high-intensity interval training (HIIT) exercise program will improve physical, cognitive, and emotional health among young adult survivors of pediatric brain tumors. The names of the study interventions involved in this study are/is: * High-Intensity Interval Training (HIIT)

Recruiting

Targeting Pediatric Brain Tumors With Sodium Glucose Cotransporter 2 Inhibitors (SGLT2i)

Missouri · Saint Louis, MO

This is a longitudinal, dose-finding, open label safety and tolerability phase Ib treatment study. The study hypothesis is that dapagliflozin will be well-tolerated by brain tumor patients on chemotherapy as assessed by tolerability and side effect profiles.

Recruiting

Systematic Light Exposure in Pediatric Brain Tumor Survivors

Texas · Houston, TX

Children and adolescents treated for a brain tumor often experience fatigue and cognitive symptoms, such as slowed information processing and inattention. These symptoms may cause difficulty carrying out daily activities at home and at school. There are few well-researched, non-pharmacological interventions aimed at improving symptoms of fatigue and by extension cognitive symptoms. Systematic bright light exposure has been shown to improve symptoms of fatigue in adult survivors of cancer and children treated for some forms of cancer. This is a pilot/feasibility study and the first known study in children treated for a brain tumor. Findings from this study will be used to help plan a larger study to examine the effectiveness of this intervention and mechanisms of action. PRIMARY OBJECTIVE: 1. To evaluate feasibility and adherence in a study of systematic bright light exposure used to improve fatigue and cognitive efficiency in survivors of pediatric brain tumor, including rates of enrollment, adherence, and acceptability. SECONDARY OBJECTIVES: 2. To estimate the effect size of change in fatigue associated with bright light exposure. 3. To estimate the effect size of change in cognitive efficiency associated with bright light exposure.

Recruiting

Chemo-immunotherapy Using Ibrutinib Plus Indoximod for Patients With Pediatric Brain Cancer

Georgia

Recent lab-based discoveries suggest that IDO (indoleamine 2,3-dioxygenase) and BTK (Bruton's tyrosine Kinase) form a closely linked metabolic checkpoint in tumor-associated antigen-presenting cells. The central clinical hypothesis for the GCC2020 study is that combining ibrutinib (BTK-inhibitor) with indoximod (IDO-inhibitor) during chemotherapy will synergistically enhance anti-tumor immune responses, leading to improvement in clinical response with manageable overlapping toxicity. GCC2020 is a prospective open-label phase 1 trial to determine the best safe dose of ibrutinib to use in combination with a previously studied chemo-immunotherapy regimen, comprised of the IDO-inhibitor indoximod plus oral metronomic cyclophosphamide and etoposide (4-drug combination) for participants, age 6 to 25 years, with relapsed or refractory primary brain cancer. Those previously treated with indoximod plus temozolomide may be eligible, including prior treatment via the phase 2 indoximod study (GCC1949, NCT04049669), the now closed phase 1 study (NLG2105, NCT02502708), or any expanded access (compassionate use) protocols. A dose-escalation cohort will determine the best safe dose of ibrutinib for the 4-drug combination. This will be followed by an expansion cohort, using ibrutinib at the best safe dose in the 4-drug combination, to allow assessment of preliminary evidence of efficacy.

Recruiting

Cognitive Biomarkers in Pediatric Brain Tumor Patients

Missouri · Saint Louis, MO

The investigators will focus on three cohorts of brain tumor patients aged, 4-18 years, to answer two critical questions: 1) Can the investigators acquire high quality data relevant to cognitive function during the peri-diagnostic period and, 2) can the investigators develop predictive models for cognitive outcomes using serial examination of functional imaging and cognitive function. Any patient with a newly diagnosed brain tumor aged 4-18 will be eligible for enrollment in cohort 1. Only patients with previously diagnosed tumors of the posterior fossa will be eligible for cohort 2. For cohort 3, eligible patients will include patients with a clinical diagnosis of posterior fossa syndrome with physical impairments that prohibit completion of the NIH Toolbox Cognitive Battery. The investigators have decided to expand the eligible tumor types to better capture the most significant deficit variability that can be caused by tumors outside the posterior fossa. Thus, this focus will provide a platform to analyze the impact that different tumor types and different standard treatments have on cognitive dysfunction. The rationale for inclusion of subjects on cohort 3 is that posterior fossa syndrome is one of the most cognitively devastating diagnoses following a posterior fossa surgery. The causes of posterior fossa syndrome and unknown and there are currently no interventions to improve symptoms. RsfcMRI would offer a novel and non-invasive assessment of posterior fossa syndrome patients by assessing connectivity within and outside of the cerebellum. Expanding the tumor eligibility will allow us to further explore the effect tumor location will have on cognitive testing and rsfcMRI. Here, repeated evaluations on and off therapy will provide the necessary data points to establish trajectories of cognitive development and recovery in this population.

Recruiting

Evaluation of the Neurologic Assessment in Pediatric Neuro-Oncology (pNANO)

Wisconsin · Madison, WI

This study aims to investigate a neurologic exam scale to provide an objective and more standard way to assess tumor response in pediatric patients with brain and spinal cord tumors.

Recruiting

GPC2-CAR T Cell Therapy for Relapsed or Refractory Medulloblastoma in Children and Young Adults

Palo Alto, California

This is a single-site, open-label Phase 1 clinical trial evaluating the feasibility, safety, and preliminary activity of autologous GPC2-targeted chimeric antigen receptor (CAR) T cells administered via intracerebroventricular (ICV) infusion in children and young adults with relapsed or refractory medulloblastoma or other eligible Central Nervous System (CNS) embryonal tumors.